Open Access
Issue
ITM Web Conf.
Volume 53, 2023
2nd International Conference on Data Science and Intelligent Applications (ICDSIA-2023)
Article Number 02010
Number of page(s) 14
Section Machine Learning / Deep Learning
DOI https://doi.org/10.1051/itmconf/20235302010
Published online 01 June 2023
  1. Yang, J., An, L., Dixit, A., Koo, J., Park, S.I.: Depth estimation with simplified transformer. arXiv preprint arXiv:2204.13791 (2022) [Google Scholar]
  2. Wang, Y., Chao, W.-L., Garg, D., Hariharan, B., Campbell, M., Wein-berger, K.Q.: Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8445–8453 (2019) [Google Scholar]
  3. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3d reconstruction in real-time. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 963–968 (2011). Ieee [Google Scholar]
  4. Kyto, M., Nuutinen, M., Oittinen, P.: Method for measuring stereo camera depth accuracy based on stereoscopic vision. In: Three-Dimensional Imaging, Interaction, and Measurement, vol. 7864, pp. 168–176 (2011). SPIE [Google Scholar]
  5. Nasteski, V.: An overview of the supervised machine learning methods. Horizons. b 4, 51–62 (2017) [CrossRef] [Google Scholar]
  6. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017) [Google Scholar]
  7. Klingner, M., Term hlen, J.-A., Mikolajczyk, J., Fingscheidt, T.: Self-supervised monocular depth estimation: Solving the dynamic object problem by semantic guidance. In: European Conference on Computer Vision, pp. 582–600 (2020). Springer [Google Scholar]
  8. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) [Google Scholar]
  9. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE transactions on Signal Processing 45(11), 2673–2681 (1997) [CrossRef] [Google Scholar]
  10. Hou, X., Shen, L., Sun, K., Qiu, G.: Deep feature consistent variational autoencoder. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1133–1141 (2017). IEEE [Google Scholar]
  11. Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., Yang, G.-Z.: Self-supervised siamese learning on stereo image pairs for depth estimation in robotic surgery. arXiv preprint arXiv:1705.08260 (2017) [Google Scholar]
  12. Wang, T.-C., Efros, A.A., Ramamoorthi, R.: Occlusion-aware depth estimation using light-field cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3487–3495 (2015) [Google Scholar]
  13. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domainadaptation for synthetic medical images via adversarial training. IEEE transactions on medical imaging 37(12), 2572–2581 (2018) [CrossRef] [Google Scholar]
  14. Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: Towards real-time unsupervised monocular depth estimation on cpu. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.5848–5854 (2018). IEEE [Google Scholar]
  15. Wang, Z., Ma, Y., Liu, Z., Tang, J.: R-transformer: Recurrent neural network enhanced transformer. arXiv preprint arXiv:1907.05572 (2019) [Google Scholar]
  16. Cai, Z., Vasconcelos, N.: Cascade r-cnn: high quality object detection and instance segmentation. IEEE transactions on pattern analysis and machine intelligence 43(5), 1483–1498 (2019) [Google Scholar]
  17. Ayodele, T.O.: Types of machine learning algorithms. New advances in machine learning 3, 19–48 (2010) [Google Scholar]
  18. Osisanwo, F., Akinsola, J., Awodele, O., Hinmikaiye, J., Olakanmi, O., Akinjobi, J.: Supervised machine learning algorithms: classification and comparison. International Journal of Computer Trends and Technology (IJCTT) 48(3), 128–138 (2017) [CrossRef] [Google Scholar]
  19. Watson, J., Firman, M., Brostow, G.J., Turmukhambetov, D.: Self-supervised monocular depth hints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2162–2171 (2019) [Google Scholar]
  20. Shu, C., Yu, K., Duan, Z., Yang, K.: Feature-metric loss for self-supervised learning of depth and egomotion. In: European Conference on Computer Vision, pp. 572–588 (2020). Springer [Google Scholar]
  21. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3828–3838 (2019) [Google Scholar]
  22. Peng, R., Wang, R., Lai, Y., Tang, L., Cai, Y.: Excavating the potential capacity of selfsupervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15560–15569 (2021) [Google Scholar]
  23. Casser, V., Pirk, S., Mahjourian, R., Angelova, A.: Depth predictionwithout the sensors: Leveraging structure for unsupervised learning from monocular videos. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8001–8008 (2019) [Google Scholar]
  24. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017) [Google Scholar]
  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-timeobject detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(6), 1137-1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031 [CrossRef] [Google Scholar]
  26. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2018) [Google Scholar]
  27. Cetinkaya, B., Kalkan, S., Akbas, E.: Does depth estimation help object detection? Image and Vision Computing 122, 104427 (2022) [Google Scholar]
  28. He, K., Gkioxari, G., Doll’ar, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969(2017) [Google Scholar]
  29. Girshick, R.: Fast r-cnn. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169 [Google Scholar]
  30. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet:18 Depth Estimation using DNN Architecture and Vision Based Transformers A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848 [Google Scholar]
  31. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti dataset. International Journal of Robotics Research (IJRR) (2013) [Google Scholar]
  32. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015) [Google Scholar]
  33. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving?the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.