Open Access
ITM Web Conf.
Volume 53, 2023
2nd International Conference on Data Science and Intelligent Applications (ICDSIA-2023)
Article Number 02014
Number of page(s) 10
Section Machine Learning / Deep Learning
Published online 01 June 2023
  1. [Google Scholar]
  2. [Google Scholar]
  3. Y. Ensafi, S.H. Amin, G. Zhang and B. Shah. Time-series forecasting of seasonal items sales using machine learning–A comparative analysis. International Journal of Information Management Data Insights, 2(1), p.100058 (2022) [CrossRef] [Google Scholar]
  4. S. Rai, J. Nandre and B.R. Kanawade. A Comparative Analysis of Crop Yield Prediction using Regression. In 2022 2nd International Conference on Intelligent Technologies (CONIT) (pp. 1-4). IEEE (2022) [Google Scholar]
  5. N. Ejaz and S. Abbasi. Wheat yield prediction using neural network and integrated svmnn with regression. Pakistan Journal of Engineering, Technology & Science, 8(2)(2020) [Google Scholar]
  6. M. Geetha, R.C. Suganthe, S.K. Nivetha, R. Anju, R. Anuradha and J. Haripriya. A TimeSeries Based Yield Forecasting Model Using Stacked Lstm To Predict The Yield Of Paddy In Cauvery Delta Zone In Tamilnadu. In 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT) (pp. 1-6). IEEE (2022) [Google Scholar]
  7. B.K. Jha, and S. Pande. Time series forecasting model for supermarket sales using FBprophet. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 547-554). IEEE (2021) [Google Scholar]
  8. A.K. Sharma, and A.S. Rajawat. Crop Yield Prediction using Hybrid Deep Learning Algorithm for Smart Agriculture. In 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS) (pp. 330-335). IEEE (2022) [Google Scholar]
  9. F. Jafari, L. Nassar, and F. Karray. Time series similarity analysis framework in fresh produce yield forecast domain. In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2368-2374). IEEE (2021) [Google Scholar]
  10. A. Garg and B. Garg. A robust and novel regression based fuzzy time series algorithm for prediction of rice yield. In 2017 international conference on intelligent communication and computational techniques (ICCT) (pp. 48-54). IEEE (2017) [Google Scholar]
  11. C. Vancutsem, J.F. Pekel, F. Kayitakire, G. Duveiller, M. Meroni, W. Baethgen and Ceccato, P., 2013, August. Mapping winter and summer crops in Uruguay using MODIS time series. In 2013 Second International Conference on Agro-Geoinformatics (AgroGeoinformatics) (pp. 292-295). IEEE (2013) [Google Scholar]
  12. M. Daraghmeh, A. Agarwal, R. Manzano and M. Zaman. Time series forecasting using Facebook Prophet for cloud resource management. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1-6). IEEE (2021) [Google Scholar]
  13. P. Chakraborty, M. Corici and T. Magedanz. A comparative study for Time Series Forecasting within software 5G networks. In 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS) (pp. 1-7). IEEE (2020) [Google Scholar]
  14. K. Taunk, P. Singh and R.K. Behera. Suicide Trend Analysis and Prediction in India using Facebook Prophet. In 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 670-675). IEEE (2021) [Google Scholar]
  15. S.J. Taylor and B. Letham. Forecasting at scale. The American Statistician, 72(1), pp.3745 (2018) [CrossRef] [MathSciNet] [Google Scholar]
  16. B.M. Nayana, K.R. Kumar and C. Chesneau. Wheat Yield Prediction in India Using Principal Component Analysis-Multivariate Adaptive Regression Splines (PCAMARS). AgriEngineering, 4(2), pp. 461-474 (2022) [CrossRef] [Google Scholar]
  17. Z. Chen, H.S. Goh, K.L. Sin, K. Lim, N.K.H. Chung, and X.Y. Liew. Automated agriculture commodity price prediction system with machine learning techniques. arXiv preprint arXiv:2106.12747 (2021) [Google Scholar]
  18. R. Alvarez. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European Journal of Agronomy, 30(2), pp. 70-77 (2009) [CrossRef] [Google Scholar]
  19. H. Wang and Z. Ma. Prediction of wheat stripe rust based on support vector machine. In 2011 Seventh International Conference on Natural Computation (Vol. 1, pp. 378-382). IEEE (2011) [Google Scholar]
  20. Y. Çakır, M. Kırcı, and E.O. Güneş. Yield prediction of wheat in south-east region of Turkey by using artificial neural networks. In 2014 The Third International Conference on Agro-Geoinformatics (pp. 1-4). IEEE (2014) [Google Scholar]
  21. J. Hirapara, and P. Vanjara,. A Comparative study of Data Mining Techniques for Agriculture Crop Price Prediction. In 2022 IEEE 7th International conference for Convergence in Technology (I2CT) (pp. 1-6). IEEE (2022) [Google Scholar]
  22. T. Fei, W. Wenbin, L. Dandan, C. Zhongxin, H. Qing, and X. Tian. Yield estimation of winter wheat in North China Plain by using crop growth monitoring system (CGMS). In 2012 First International Conference on Agro-Geoinformatics (AgroGeoinformatics) (pp. 1-4). IEEE (2012) [Google Scholar]
  23. R.N. Singh, P. Krishnan, V.K. Singh and B. Das. Estimation of yellow rust severity in wheat using visible and thermal imaging coupled with machine learning algorithms. Geocarto International, pp. 1-22. (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.