Open Access
Issue |
ITM Web Conf.
Volume 53, 2023
2nd International Conference on Data Science and Intelligent Applications (ICDSIA-2023)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 10 | |
Section | Ethics, Privacy and Trust, Computer Network, Big Data Systems | |
DOI | https://doi.org/10.1051/itmconf/20235303002 | |
Published online | 01 June 2023 |
- J. Gu, B. Sun, X. Du, J. Wang, Y. Zhuang, Z. Wang, Consortium blockchain-based malware detection in mobile devices, IEEE Access. 6 12118–12128 (2018). [CrossRef] [Google Scholar]
- R. Kumar, X. Zhang, W. Wang, R.U. Khan, J. Kumar, A. Sharif, A multimodal malware detection technique for Android IOT devices using various features, IEEE Access. 7 64411–64430 (2019). [CrossRef] [Google Scholar]
- A.S. Alotaibi, Biserial Miyaguchi–preneel blockchain-based Ruzicka-indexed deep perceptive learning for malware detection in IOMT, Sensors. 21 7119 (2021). [CrossRef] [Google Scholar]
- R. Punithavathi, K. Venkatachalam, M. Masud, M. A. AlZain, M. Abouhawwash, Crypto hash based malware detection in IOMT framework, Intelligent Automation & Soft Computing. 34 559–574 (2022). [CrossRef] [Google Scholar]
- S. Raje, S. Vaderia, N. Wilson, R. Panigrahi, Decentralised firewall for malware detection, 2017 International Conference on Advances in Computing, Communication and Control (ICAC3). (2017). [Google Scholar]
- M.S. Rana, C. Gudla, A.H. Sung, Evaluating machine learning models on the Ethereum Blockchain for Android Malware detection, Advances in Intelligent Systems and Computing. 446–461 (2019). [CrossRef] [Google Scholar]
- N. Anita., M. Vijayalakshmi., Blockchain security attack: A brief survey, 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). (2019). [Google Scholar]
- R. Fuji, S. Usuzaki, K. Aburada, H. Yamaba, T. Katayama, M. Park, et al., Blockchainbased malware detection method using shared signatures of suspected malware files, Advances in Networked-Based Information Systems. 305–316 (2019). [Google Scholar]
- S. Homayoun, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, A blockchain-based framework for detecting malicious mobile applications in App Stores, 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). (2019). [Google Scholar]
- J. Moubarak, M. Chamoun, E. Filiol, Developing a Κ-ary malware using blockchain, NOMS 2018 2018 IEEE/IFIP Network Operations and Management Symposium. (2018). [Google Scholar]
- S. Saad, W. Briguglio, H. Elmiligi, The curious case of machine learning in malware detection, Proceedings of the 5th International Conference on Information Systems Security and Privacy. (2019). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.