Open Access
ITM Web Conf.
Volume 54, 2023
2nd International Conference on Advances in Computing, Communication and Security (I3CS-2023)
Article Number 01004
Number of page(s) 8
Section Computing
Published online 04 July 2023
  1. D. Scaramuzza, F. Fraundorfer, IEEE Robotics Automation Magazine 18, 80 (2011) [CrossRef] [Google Scholar]
  2. A. Howard, Real-time stereo visual odometry for autonomous ground vehicles, in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (2008), pp. 3946–3952 [CrossRef] [Google Scholar]
  3. T. Pandey, D. Pena, J. Byrne, D. Moloney, Sensors 21 (2021) [Google Scholar]
  4. P. Muller, A. Savakis, Flowdometry: An Optical Flow and Deep Learning Based Ap- proach to Visual Odometry, in 2017 IEEE Winter Conference on Applications of Com- puter Vision (WACV) (2017), pp. 624–631 [CrossRef] [Google Scholar]
  5. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., CoRR abs/2010.11929 (2020), 2010. 11929 [Google Scholar]
  6. D. Warren, E. Strelow, Electronic Spatial Sensing for the Blind: Contributions from Perception, Rehabilitation, and Computer Vision, Nato Science Series E: (Springer Netherlands, 1985), ISBN 9789024732388,\_Hazgqx8QC [Google Scholar]
  7. P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, T. Brox, CoRR absA504.06852 (2015), 1504. 06852 [Google Scholar]
  8. E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, CoRR abs/1612.01925 (2016), 1612. 01925 [Google Scholar]
  9. T. Hui, X. Tang, C.C. Loy, CoRR absA805.07036 (2018), 1805. 07036 [Google Scholar]
  10. T. Hui, C.C. Loy, CoRR abs/2007.09319 (2020), 2007. 09319 [Google Scholar]
  11. M. Menze, A. Geiger, Object Scene Flow for Autonomous Vehicles, in Conference on Computer Vision and Pattern Recognition (CVPR) (2015) [Google Scholar]
  12. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is All You Need, in Proceedings of the 31st International Con- ference on Neural Information Processing Systems (Curran Associates Inc., Red Hook, NY, USA, 2017), NIPS’17, p. 6000–6010, ISBN 9781510860964 [Google Scholar]
  13. Z. Yin, T. Darrell, F. Yu, CoRR abs/1812.06264 (2018), 1812. 06264 [Google Scholar]
  14. J. Hur, S. Roth, CoRR abs/1904.05290 (2019), 1904. 05290 [Google Scholar]
  15. P. Liu, M.R. Lyu, I. King, J. Xu, CoRR absA904.09117 (2019), 1904. 09117 [Google Scholar]
  16. J. Jiao, J. Jiao, Y. Mo, W. Liu, Z. Deng, CoRR abs/1811.10964 (2018), 1811. 10964 [Google Scholar]
  17. Y. Almalioglu, M.R.U. Saputra, P.P. De Gusmao, A. Markham, N. Trigoni, GANVO: Unsupervised deep monocular visual odometry and depth estimation with generative adversarial networks, in 2019 International conference on robotics and automation (ICRA) (IEEE, 2019), pp. 5474–5480 [CrossRef] [Google Scholar]
  18. S. Rao, SuperVO: A Monocular Visual Odometry based on Learned Feature Matching with GNN, in 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE) (2021), pp. 18–26 [CrossRef] [Google Scholar]
  19. Y. Lu, G. Lu, Deep Unsupervised Learning for Simultaneous Visual Odometry and Depth Estimation, in 2019 IEEE International Conference on Image Processing (ICIP) (2019), pp. 2571–2575 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.