Open Access
ITM Web Conf.
Volume 54, 2023
2nd International Conference on Advances in Computing, Communication and Security (I3CS-2023)
Article Number 04003
Number of page(s) 7
Section VLSI Design and Material Science
Published online 05 July 2023
  1. S. Lai, Y. Wu and W. Gu, "Design of a Transparent Metamaterial Cross Polarization Converter With Large Incident Angle Range," in IEEE Photonics Journal, vol. 13, no. 4, pp. 1–5, Aug. 2021. [CrossRef] [Google Scholar]
  2. Mohammad Rashed Iqbal Faruque, Ahmed Mahfuz Tamim "Highly Efficient Metasur- face Polarization Converter at Far-Infrared Range" Front. Phys., 27 April 2022. [Google Scholar]
  3. Ahmad, T.; Rahim, A.A.; Bilal, R.M.H.; Noor, A.; Maab, H.; Naveed, M.A.; Madni, A.; Ali, M.M.; Saeed, M.A. Ultrawideband Cross-Polarization Converter Using Anisotropic Reflective Metasurface. Electronics 2022, 11, 487. [CrossRef] [Google Scholar]
  4. M.R. Soheilifar and R.A. Sadeghzadeh, “Design, fabrication and characterization of stacked layers planar broadband metamaterial absorber at microwave frequency,” AEU - Int. J. Electron. Communication, vol. 69, no. 1, pp. 126–132, 2015 [CrossRef] [Google Scholar]
  5. Pouyanfar, N., Nourinia, J. Ghobadi, C." Multiband and multifunctional po- larization converter using an asymmetric metasurface". Sci Rep 11, 9306 (2021), [CrossRef] [Google Scholar]
  6. Gao, X. et al." A reconfgurable broadband polarization converter based on an active meta- surface". IEEE Trans. Antennas Propagat, 66(11), 6086–6095 (2018). [CrossRef] [Google Scholar]
  7. Y. Wu, C. Fu, H. Chang, S. Lai, X. Chen and W. Gu, "Design of the Transparent and Flexible Metamaterial Cross Polarization Converters," 2021 IEEE MTT-S Interna- tional Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chongqing, China, 2021, pp. 19–21, doi: 10.1109/IMWS-AMP53428.2021.9643926. [Google Scholar]
  8. Mei, Z.L., Ma, X.M., Lu, C. Zhao, Y.D. High-efciency and wide-bandwidth linear polarization converter based on double U-shaped metasurface. AIP Adv. 7(12), 125323 [Google Scholar]
  9. Xu, J., Li, R., Qin, J., Wang, S. Han, T. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Opt. Express 26(16), 20913–20919 (2018). [CrossRef] [Google Scholar]
  10. M.M. Couto, M. W. B. Silva A. L. P. S. Campos (2021): A novel ultrawideband reflective cross-polarization converter based on anisotropic metasurface, Journal of Elec- tromagnetic Waves and Applications, 2021. [Google Scholar]
  11. Lin, B.Q. et al. Multipe-Band Linear-Polarization Converter and Circular Polariza- tion in refection mode using a symmetric anisotropic metasurface. Phys. Rev. Appl. 9(2), 024038 2018. [CrossRef] [Google Scholar]
  12. Li, S.J. et al. Analysis and design of three layers perfect metamaterial-inspired absorber based on double split-serration-rings structure. IEEE Trans. Antennas Propag. 63(11), 5155–5160 2015. [CrossRef] [Google Scholar]
  13. Cheng Y, Wang J. Tunable Terahertz Circular Polarization Convertor Based on Graphene Metamaterial. Diamond Relat Mater 2021. [Google Scholar]
  14. Zhu J, Li S, Deng L, Zhang C, Yang Y, Zhu H. Broadband Tunable Terahertz Polar- ization Converter Based on a Sinusoidally-Slotted Graphene Metamaterial. Opt Mater Ex- press 2018. [Google Scholar]
  15. Salman MS, Khan MI, Tahir FA, Rmili H. Multifunctional Single Layer Metasurface Based on Hexagonal Split Ring Resonator. IEEE Access 2020. [Google Scholar]
  16. Tamim AM, Hasan MM, Faruque MRI, Islam MT, Nebhen J. Polarization independent Symmetrical Digital Metasurface Absorber. Results Phys 2021. [Google Scholar]
  17. Chang C-C, Headland D, Abbott D, Withayachumnankul W, Chen H-T. Demonstra- tion of a Highly Efficient Terahertz Flat Lens Employing Tri-layer Metasurfaces. Opt Lett 2017. [Google Scholar]
  18. Su P, Zhao Y, Jia S, Shi W, Wang H. An Ultra-Wideband and Polarization Independent Metasurface for RCS Reduction. Sci Rep 2016. [Google Scholar]
  19. Zeng, Q., Ren, W., Zhao, H., Xue, Z. Li, W. Dual-band transmission-type circular polarizer based on frequency selective surfaces. IET Microwaves Antennas Propag. 13(2), 216–222 2018. [Google Scholar]
  20. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi band circular polarizer us- ing planar spiral metamaterial structure,” Opt. Express, vol. 20, no. 14, pp. 16050–16058, 2012. [CrossRef] [Google Scholar]
  21. Khan, B. et al. Design and experimental analysis of dual-band polarization converting metasurface for microwave applications. Sci. Rep. 10(1), 1–13 2020. [NASA ADS] [CrossRef] [Google Scholar]
  22. T. Noishiki, R. Kuse, and T. Fukusako, “Wideband metasurface polarization converter with double-square-shaped patch elements,” Prog. electromagnetics Res. C, vol. 105, pp. 47–58, 2020. [CrossRef] [Google Scholar]
  23. P. Xu, S. Y. Wang, and G. Wen, “A linear polarization converter with near unity effi- ciency in microwave regime,” J. Appl. Phys., vol. 121, no. 14, pp. 1804–1949, 2017. [Google Scholar]
  24. S. Bhattacharyya, S. Ghosh, and K.V. Srivastava,“Anultra-thinpolarization independent metamaterial absorber for triple band applications,” in Proc. IEEE Appl. Electromagnetics Conf., 2013. [Google Scholar]
  25. J. Hao et al., “Manipulating electromagnetic wave polarizations by anisotropic metama- terials” Phys. Rev. Lett., vol. 99, no. 6, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.