Open Access
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 02006
Number of page(s) 5
Section Data Science
Published online 09 August 2023
  1. Aggarwal, D. (2022). Defining and measuring market sentiments: A review of the literature. Qualitative Research in Financial Markets, 14(2), 270–288. [CrossRef] [Google Scholar]
  2. Kumar, A., & Jaiswal, A. (2020). Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurrency and Computation: Practice and Experience, 32(1), e5107. [Google Scholar]
  3. Kumar, G., Jain, S., & Singh, U. P. (2021). Stock market forecasting using computational intelligence: A survey. Archives of computational methods in engineering, 28, 1069–1101. [CrossRef] [MathSciNet] [Google Scholar]
  4. Rouf, N., Malik, M. B., Arif, T., Sharma, S., Singh, S., Aich, S., & Kim, H. C. (2021). Stock market prediction using machine learning techniques: a decade survey on methodologies, recent developments, and future directions. Electronics, 10(21), 2717. [CrossRef] [Google Scholar]
  5. Chung, H., & Shin, K. S. (2018). Genetic algorithm-optimized long short-term memory network for stock market prediction. Sustainability, 10(10), 3765. [CrossRef] [Google Scholar]
  6. Hasan, A., Moin, S., Karim, A., & Shamshirband, S. (2018). Machine learning-based sentiment analysis for twitter accounts. Mathematical and computational applications, 23(1), 11. [CrossRef] [Google Scholar]
  7. Wu, S., Liu, Y., Zou, Z., & Weng, T. H. (2022). S_I_LSTM: stock price prediction based on multiple data sources and sentiment analysis. Connection Science, 34(1), 44–62. [CrossRef] [Google Scholar]
  8. Mehtab, S., & Sen, J. (2019). A robust predictive model for stock price prediction using deep learning and natural language processing. arXiv preprint arXiv:1912.07700. [Google Scholar]
  9. Pahwa, K., & Agarwal, N. (2019, February). Stock market analysis using supervised machine learning. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) (pp. 197-200). IEEE. [Google Scholar]
  10. Nousi, P., Tsantekidis, A., Passalis, N., Ntakaris, A., Kanniainen, J., Tefas, A., … & Iosifidis, A. (2019). Machine learning for forecasting mid-price movements using limit order book data. Ieee Access, 7, 64722–64736. [CrossRef] [Google Scholar]
  11. Matsunaga, D., Suzumura, T., & Takahashi, T. (2019). Exploring graph neural networks for stock market predictions with rolling window analysis. arXiv preprint arXiv:1909.10660. [Google Scholar]
  12. Mehtab, S., & Sen, J. (2020). Stock price prediction using convolutional neural networks on a multivariate timeseries. arXiv preprint arXiv:2001.09769. [Google Scholar]
  13. Mehtab, S., Sen, J., & Dasgupta, S. (2020, November). Robust analysis of stock price time series using CNN and LSTM-based deep learning models. In 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 1481-1486). IEEE. [CrossRef] [Google Scholar]
  14. Seals, E., & Price, S. R. (2020, March). Preliminary Investigation in the use of Sentiment Analysis in Prediction of Stock Forecasting using Machine Learning. In 2020 SoutheastCon (Vol. 2, pp. 1-2). IEEE. Mehtab, S., & Sen, J. (2020). Time Series Analysis-Based Stock Price Prediction Framework Using Machine Learning and Deep Learning Models. Dept. Data Sci. and Artif. Intell. [Google Scholar]
  15. Gite, S., Khatavkar, H., Kotecha, K., Srivastava, S., Maheshwari, P., & Pandey, N. (2021). Explainable stock prices prediction from financial news articles using sentiment analysis. PeerJ Computer Science, 7, e340. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.