Open Access
Issue
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 03001
Number of page(s) 17
Section Deep Learning
DOI https://doi.org/10.1051/itmconf/20235603001
Published online 09 August 2023
  1. Martin R. Cowie, Juuso I. Blomster, Lesley H. Curtis, Sylvie Duclaux, Ian Ford, Fleur Fritz, Samantha Goldman, Salim Janmohamed, Jörg Kreuzer, Mark Leenay, et al. 2017. Electronic health records to facilitate clinical research. Clinical Research in Cardiology 106, 1, 1-9, 2017. [CrossRef] [Google Scholar]
  2. HIT Consultant. Why unstructured data holds the key to intelligent healthcare systems [Internet]. Atlanta (GA): HIT Consultant; cited at 2019 Jan 15, 2015. [Google Scholar]
  3. Cao Xiao, Edward Choi, and Jimeng Sun. 2018. “Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review” Journal of the American Medical Informatics Association 25, 10, 1419-1428, 2018. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. A. Hasan and O. Farri, “Clinical natural language processing with deep learning,” in Data Science for Healthcare. Springer, pp. 147-171, 2019. [CrossRef] [Google Scholar]
  5. G. K. Savova, K. C. Kipper-Schuler, J. F. Hurdle, and S. M. Meystre, “Extracting information from textual documents in the electronic healthrecord: A review of recent research,” Yearbook Medical Information, vol. 17, no. 1, pp. 128–144, 2008. [CrossRef] [Google Scholar]
  6. Homa Alemzadeh, and Murthy Devarakonda, “An NLP-based Cognitive System for Disease Status Identification inElectronic Health Records”, 978-1-5090-4179-4/17, IEEE. [Google Scholar]
  7. H. Yang, et al., “A text mining approach to the prediction of disease status from clinical discharge summaries,” JAMIA, vol. 16, no. 4, pp. 596-600, 2009. [Google Scholar]
  8. R. Kirk and S. M. Harabagiu, “A flexible framework for deriving assertions from electronic medical records,” JAMIA, vol. 18, no. 5, pp. 568–573, 2011. [Google Scholar]
  9. D. Demner-Fushman, W. W. Chapman, and C. J. McDonald, “What can natural language processing do forclinical decision support?” J. Biomedical. Information, vol. 42, no. 5, pp. 760–772, 2009. [CrossRef] [Google Scholar]
  10. Essam H. Houssein, Rehab E. Mohamed, And Abdelmgeid A. Ali, “Machine Learning Techniques for Biomedical Natural Language Processing: A Comprehensive Review”, Digital Object Identifier 10.1109/IEEE Access.2021.3119621, Volume 9, 2021. [Google Scholar]
  11. W. contributors, “Natural Language Processing- Wikipedia, the Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Naturallanguageprocessing, 2020. [Google Scholar]
  12. C. Friedman, T. C. Rindfiesch, and M. Corn, “Natural language processing: State of the art and prospects for significant progress, a work shop sponsored by the National Library of Medicine,” J. Biomed. Inform., vol. 46, no. 5, pp. 765–773, 2013. [CrossRef] [Google Scholar]
  13. J. Henry, Y. Pylypchuk, T. Searcy, and V. Patel, “Adoption of electronic health record systems among US non-federal acute care hospitals: 2008-2015,” ONC Data Brief, vol. 35, pp. 1–9, May 2016. [Google Scholar]
  14. L. A. Knake, M. Ahuja, E. L. McDonald, K. K. Ryckman, N. Weathers, T. Burstain, J. M. Dagle, J. C. Murray, and P. Nadkarni, “Quality ofEHR data extractions for studies of preterm birth in a tertiary care center: Guidelines for obtaining reliable data,” BMC Pediatrics, vol. 16, no. 1, p. 59, Dec. 2016. [CrossRef] [Google Scholar]
  15. L. T. Kohn, J. M. Corrigan, and M. S. Donaldson, “Institute of medicine (US) committee on quality of health care in America,” in To Err IsHuman: Building a Safer Health System. Washington, DC, USA: National Academies, 2000. [Google Scholar]
  16. J. A. Casey, B. S. Schwartz, W. F. Stewart, and N. E. Adler, “Using electronic health records for population health research: A review ofmethods and applications,” Annu. Rev. Public Health, vol. 37, no. 1, pp. 61–81, Mar. 2016. [CrossRef] [Google Scholar]
  17. Y. Wang, “Clinical information extraction applications: A literature review,” J. Biomed. Inform., vol. 77, pp. 34–49, Jan. 2018. [CrossRef] [Google Scholar]
  18. K. Kreimeyer, M. Foster, A. Pandey, N. Arya, G. Halford, S. F. Jones, R. Forshee, M. Walderhaug, and T. Botsis, “Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review,” J. Biomed. Informat., vol. 73, pp. 14–29, Sep. 2017. [CrossRef] [Google Scholar]
  19. L. Chen, Y. Gu, X. Ji, Z. Sun, H. Li, Y. Gao, and Y. Huang, “Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning,” J. Amer. Med. Inform. Assoc., vol. 27, no. 1, pp. 56–64, Jan. 2020. [CrossRef] [Google Scholar]
  20. S. Fu, D. Chen, H. He, S. Liu, S. Moon, K. J. Peterson, F. Shen, L. Wang, Y. Wang, A. Wen, Y. Zhao, S. Sohn, and H. Liu, “Clinical concept extraction: A methodology review,” J. Biomed. Informat., vol. 109, Art. no. 103526, Sep. 2020. [Google Scholar]
  21. W. Sun, Z. Cai, Y. Li, F. Liu, S. Fang, and G. Wang, “Data processing and text mining technologies on electronic medical records: A review,” J. Healthcare Eng., vol. 2018, Art. no. 4302425, Apr. 2018. [Google Scholar]
  22. M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, and K. Kochut, “A brief survey of text mining: Classification, clustering and extraction techniques,” 2017, arXiv:1707.02919. [Online]. Available: http://arxiv.org/abs/1707.02919, 2017. [Google Scholar]
  23. A. Finiegula, A. Poniszewska-Mara«da, and L. Chomtek, “Towards the named entity recognition methods inbiomedical field,” in Proc. Int. Conf. Current Trends Theory Pract. Inform. Springer, 2020, pp. 375-387, 2020. [Google Scholar]
  24. Y. Shinyama and S. Sekine, “Proceedings of the main conference on human language technology conference of the north American chapter of the association of computationallinguistics,” Assoc. Comput. Linguistics, Stroudsburg, PA, USA, Tech. Rep., 2006. [Google Scholar]
  25. B. Rink, S. Harabagiu, and K. Roberts, “Automatic extraction of relations between medical concepts in clinical texts,” J. Amer. Med. Inform. Assoc., vol. 18, no. 5, pp. 594-600, Sep. 2011. [CrossRef] [Google Scholar]
  26. Q. Wei, Z. Ji, Y. Si, J. Du, J. Wang, F. Tiryaki, S. Wu, C. Tao, K. Roberts, and H. Xu, “Relation extraction from clinical narratives using pre-trained language models,” in Proc. AMIA Annu. Symp., p. 1236, 2019. [Google Scholar]
  27. Y. Si and K. Roberts, “A frame-based nlp system for cancer-relatedinformation extraction,” in Proc. AMIA Annu. Symp., p. 1524, 2018. [Google Scholar]
  28. W. Sun, A. Rumshisky, and O. Uzuner, “Evaluatingtemporal relations inclinical text: 2012 i2b2 challenge,” J. Amer. Med. Inform. Assoc., vol. 20, no. 5, pp. 806–813, 2013. [CrossRef] [Google Scholar]
  29. J. Xu, H.-J. Lee, Z. Ji, J. Wang, Q. Wei, and H. Xu, “UTH_CCB system for adverse drug reaction extraction fromdrug labels at TAC-ADR 2017”, in Proc. TAC, pp. 1-6, 2017. [Google Scholar]
  30. E. Aramaki, Y. Miura, M. Tonoike, T. Ohkuma, H. Masuichi, K. Waki, and K. Ohe, “Extraction of adverse drug effects from clinical records,” in Proc. MEDINFO. Amsterdam, The Netherlands: IOS Press, pp. 739-743, 2010. [Google Scholar]
  31. Ö. Uzuner, B. R. South, S. Shen, and S. L. DuVall, “2010 i2b2/VAchallenge on concepts, assertions, and relations in clinical text,” J. Amer. Med. Informat. Assoc., vol. 18, no. 5, pp. 552–556, Jun. 2011. [CrossRef] [Google Scholar]
  32. S. Bethard, G. Savova, W.-T. Chen, L. Derczynski, J. Pustejovsky, and M. Verhagen, “SemEval-2016 task 12: Clinical TempEval,” in Proc. 10th Int. Workshop Semantic Eval. (SemEval), 2016, pp. 1052-1062. [Google Scholar]
  33. Y. Chen, H. Cao, Q. Mei, K. Zheng, and H. Xu, “Applying active learning to supervised word sense disambiguation in MEDLINE,” J. Amer. Med. Inform. Assoc., vol. 20, no. 5, pp. 1001–1006, Sep. 2013. [CrossRef] [Google Scholar]
  34. H. Liu, “A multi-aspect comparison study of supervised word sense disambiguation,” J. Amer. Med. Inform. Assoc., vol. 11, no. 4, pp. 320–331, Apr. 2004. [CrossRef] [Google Scholar]
  35. M. J. Schuemie, J. A. Kors, and B. Mons, “Word sense disambiguationin the biomedical domain: An overview,” J. Comput. Biol., vol. 12, no. 5, pp. 554–565, Jun. 2005. [CrossRef] [Google Scholar]
  36. H. Xu, M. Markatou, R. Dimova, H. Liu, and C. Friedman, “Machinelearning and word sense disambiguation in the biomedical domain: Design and evaluation issues,” BMC Bioinf., vol. 7, no. 1, pp. 1–16, Dec. 2006. [CrossRef] [Google Scholar]
  37. Q. Dong and Y. Wang, “Enhancing medical word sense inventories using word sense induction: A preliminary study,” in Heterogeneous DataManagement, Polystores, and Analyticsfor Healthcare. Springer, 2020, pp. 151-16, 2020. [Google Scholar]
  38. R. M. Cronin, D. Fabbri, J. C. Denny, S. T. Rosenbloom, and G. P. Jackson, “A comparison of rule-based and machine learningapproaches for classifying patient portal messages,” Int. J. Med. Informat., vol. 105, pp. 110–120, Sep. 2017. [CrossRef] [Google Scholar]
  39. S. Kumar Sahu and A. Anand, “Recurrent neural network modelsfor disease name recognition using domaininvariant features,” arXiv:1606.09371. http://arxiv.org/abs/1606.09371, 2016. [Google Scholar]
  40. M. Habibi, L. Weber, M. Neves, D. L. Wiegandt, and U. Leser, “Deep learning withword embeddings improves biomedical named entity recognition,” Bioinformatics, vol. 33, no. 14, pp. i37–i48, Jul. 2017. [CrossRef] [Google Scholar]
  41. G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architectures for named entity recognition,” arXiv:1603.01360. http://arxiv.org/abs/1603.01360, 2016. [Google Scholar]
  42. S. Moen and T. S. S. Ananiadou, “Distributional semantics resources forbiomedical text processing,” in Proc. LBM, pp. 39-44, 2013. [Google Scholar]
  43. K. Raja and S. Jonnalagadda, “Natural language processing and data mining for clinical text,” Healthcare Data Anal., vol. 36, p. 219, Jan. 2015. [Google Scholar]
  44. K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, MA, USA: MIT Press, 2012. [Google Scholar]
  45. O. Baclic, M. Tunis, K. Young, C. Doan, H. Swerdfeger, J. Schonfeld, P. Data, and I. Hub, “Natural language processing (NLP) a subfield of artificial intelligence,” CCDR, vol. 46, no. 6, pp. 1–10, 2020. [CrossRef] [Google Scholar]
  46. P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language processing: An introduction,” J. Amer. Med. Inform. Assoc., vol. 18, no. 5, pp. 544–551, 2011. [CrossRef] [Google Scholar]
  47. Y. Bengio, A. Courville, and P. Vincent, “Representation learning:A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013. [CrossRef] [Google Scholar]
  48. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016. [Google Scholar]
  49. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016. [Google Scholar]
  50. M. Torii, J.-W. Fan, W.-L. Yang, T. Lee, M. T. Wiley, D. S. Zisook, and Y. Huang, “Risk factor detection for heart disease by applying textanalytics in electronic medical records,” J. Biomed. Informat., vol. 58, pp. S164S170, Dec. 2015. [CrossRef] [Google Scholar]
  51. J. C. Denny, N. N. Choma, J. F. Peterson, R. A. Miller, L. Bastarache, M. Li, and N. B. Peterson, “Natural language processing improves identification of colorectal cancer testing in the electronic medical record,” Med. Decis. Making, vol. 32, no. 1, pp. 188197, Jan. 2012. [CrossRef] [Google Scholar]
  52. J. Jonnagaddala, S.-T. Liaw, P. Ray, M. Kumar, H.-J. Dai, and C.-Y. Hsu, “Identication and progression of heart disease risk factors in diabeticpatients from longitudinal electronic health records,” BioMed Res. Int., vol. 2015, pp. 110, 2015. [CrossRef] [Google Scholar]
  53. H. S. Chase, L. R. Mitrani, G. G. Lu, and D. J. Fulgieri, “Early recognitionof multiple sclerosis using natural languageprocessing of the electronichealth record,” BMC Med. Informat. Decis. Making, vol. 17, no. 1, p. 24, Dec. 2017. [CrossRef] [Google Scholar]
  54. R. L. Figueroa and C. A. Flores, “Extracting information from electronicmedical records to identify the obesity status ofa patient based oncomorbidities and bodyweight measures,” J. Med. Syst., vol. 40, no. 8, pp. 191, Aug. 2016. [CrossRef] [Google Scholar]
  55. S. N. Kasthurirathne, B. E. Dixon, J. Gichoya, H. Xu, Y. Xia, B. Mamlin, and S. J. Grannis, “Toward better public health reporting using existing off the shelf approaches: A comparison of alternative cancer detection approaches usingplaintext medical data and non-dictionary based featureselection,” J. Biomed. Informat., vol. 60, pp. 145–152, Apr. 2016. [CrossRef] [Google Scholar]
  56. G. Napolitano, A. Marshall, P. Hamilton, and A. T. Gavin, “Machine learning classification of surgical pathology reports and chunk recognition for information extraction noise reduction,” Artif. Intell. Med., vol. 70, pp. 77–83, Jun. 2016. [CrossRef] [Google Scholar]
  57. H. Yang and J. M. Garibaldi, “A hybrid model for automatic identification of risk factors for heart disease,” J. Biomed. Informat., vol. 58, pp. S171–S182, Dec. 2015. [CrossRef] [Google Scholar]
  58. K. Buchan, M. Filannino, and Ö. Uzuner, “Automatic prediction ofcoronary artery disease from clinical narratives,” J. Biomed. Inf., vol. 72, pp. 23–32, Aug. 2017. [CrossRef] [Google Scholar]
  59. S. M. Castro, E. Tseytlin, O. Medvedeva, K. Mitchell, S. Visweswaran, T. Bekhuis, and R. S. Jacobson, “Automated annotation and classificationof BI-RADS assessment from radiology reports,” J. Biomed. Informat. vol. 69, pp. 177–187, May 2017. [CrossRef] [Google Scholar]
  60. Q. Chen, H. Li, B. Tang, X. Wang, X. Liu, Z. Liu, S. Liu, W. Wang, Q. Deng, S. Zhu, Y. Chen, and J. Wang, “An automatic system to identifyheart disease risk factors in clinical texts over time,” J. Biomed. Informat. vol. 58, pp. S158–S163, Dec. 2015. [CrossRef] [Google Scholar]
  61. N.-W. Chang, H.-J. Dai, J. Jonnagaddala, C.-W. Chen, R.T.-H. Tsai, and W.-L. Hsu, “A context-aware approach for progression tracking ofmedical concepts in electronic medical records,” J. Biomed. Informat. vol. 58, pp. S150–S157, Dec. 2015. [CrossRef] [Google Scholar]
  62. W.-W. Yim, S. W. Kwan, and M. Yetisgen, “Classifying tumor eventattributes in radiology reports,” J. Assoc. Inf. Sci. Technol., vol. 68, no. 11, pp. 2662-2674, Nov. 2017. [CrossRef] [Google Scholar]
  63. S. N. Kasthurirathne, B. E. Dixon, J. Gichoya, H. Xu, Y. Xia, B. Mamlin, and S. J. Grannis, “Toward better public health reporting using existingoff the shelf approaches: The value of medical dictionaries in automatedcancer detectionusing plaintext medical data,” J. Biomed. Informat. vol. 69, pp. 160–176, May 2017. [CrossRef] [Google Scholar]
  64. P. L. Teixeira, W.-Q. Wei, R. M. Cronin, H. Mo, J. P. VanHouten, R. J. Carroll, E. LaRose, L. A. Bastarache, S. T. Rosenbloom, T. L. Edwards, D. M. Roden, T. A. Lasko, R. A. Dart, A. M. Nikolai, P. L. Peissig, and J. C. Denny, “Evaluating electronic health record datasources and algorithmic approaches to identify hypertensive individuals,” J. Amer. Med. Inform. Assoc., vol. 24, no. 1, pp. 162–171, Jan. 2017. [CrossRef] [Google Scholar]
  65. B. Tang, Z. Pan, K. Yin, and A. Khateeb, “Recent advances of deeplearning in bioinformatics and computational biology,” Frontiers Genet., vol. 10, p. 214, Mar. 2019. [CrossRef] [Google Scholar]
  66. O. Baclic, M. Tunis, K. Young, C. Doan, and H. Swerdfeger, “Challengesand opportunities for public health made possible by advances in naturallanguage processing,” Canada Communicable Disease Rep., vol. 46, no. 6, pp. 161–168, Jun. 2020. [CrossRef] [Google Scholar]
  67. S. Baker, A.-L. Korhonen, and S. Pyysalo, “Cancer hallmark text classification using convolutional neural networks,” in Proc. 5th WorkshopBuilding Evaluating Resour. Biomed. Text Mining (BioTxtM), 2017, pp. 1–9. [Google Scholar]
  68. Y. Peng and Z. Lu, “Deep learning for extracting protein-protein interactionsfrom biomedical literature,” arXiv:1706.01556. [Online]. Available: http://arxiv.org/abs/1706.01556, 2017 [Google Scholar]
  69. M. Asada, M. Miwa, and Y. Sasaki, “Extracting drug- drug interactionswith attention CNNs,” in Proc. BioNLP, pp. 9-18, 2017. [Google Scholar]
  70. M. C. Chen, R. L. Ball, L. Yang, N. Moradzadeh, B. E. Chapman, D. B. Larson, C. P. Langlotz, T. J. Amrhein, and M. P. Lungren, “Deepl earning to classify radiology free-text reports,” Radiology, vol. 286, no. 3, pp. 845–852, 2017. [Google Scholar]
  71. L. Sulieman, D. Gilmore, C. French, R. M. Cronin, G. P. Jackson, M. Russell, and D. Fabbri, “Classifying patient portalmessages usingconvolutional neural networks,” J. Biomed. Informat., vol. 74, pp. 59–70, Oct. 2017. [CrossRef] [Google Scholar]
  72. G. Crichton, S. Pyysalo, B. Chiu, and A. Korhonen, “A neural networkmulti-task learning approach to biomedical named entity recognition,” BMC Bioinf., vol. 18, no. 1, p. 368, Dec. 2017. [CrossRef] [Google Scholar]
  73. H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman, and J. C. Denny, “MedEx: A medication information extraction systemfor clinical narratives,” J. Amer. Med. Inform. Assoc., vol. 17, no. 1, pp. 19–24, 2010. [CrossRef] [Google Scholar]
  74. S. Doan, L. Bastarache, S. Klimkowski, J. C. Denny, and H. Xu, “Integratingexisting natural language processing tools for medication extractionfrom discharge summaries,” J. Amer. Med. Inform. Assoc., vol. 17, no. 5, pp. 528–531, Sep. 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.