Open Access
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 05008
Number of page(s) 13
Section Machine Learning & Neural Networks
Published online 09 August 2023
  1. C. Lahmar and A. Idri, “Deep hybrid architectures for diabetic retinopathy classification,” Comput. Methods Biomech. Biomed. Eng., Imag. Vis., pp. 1-19, 2022. [Google Scholar]
  2. Diabetes. Accessed: Sep. 16, 2022. [Online]. Available: [Google Scholar]
  3. M. Mohammedhasan and H. Uguz, “A new early stage diabetic retinopathy diagnosis model using deep convolutional neural networks and principal component analysis,” Traitement Du Signal, vol. 37, no. 5, pp. 711–722, Nov. 2020. [CrossRef] [Google Scholar]
  4. R. Sun, Y. Li, T. Zhang, Z. Mao, F. Wu, and Y. Zhang, “Lesion-aware transformers for diabetic retinopathy grading,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 10938-10947. [Google Scholar]
  5. Bhuyan H. K., Chakraborty C., Explainable machine learning for data extraction across computational social system, IEEE Transactions on Computa-tional Social Systems, pages: 1-15, 2022. [Google Scholar]
  6. K. Shankar, A. R. W. Sait, D. Gupta, S. K. Lakshmanaprabu, A. Khanna, and H. M. Pandey, “Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model,” Pattern Recognit. Lett., vol. 133, pp. 210–216, May 2020. [CrossRef] [Google Scholar]
  7. S. B. Othman, F. A. Almalki, C. Chakraborty, and H. Sakli, “Privacy preserving aware data aggregation for IoT-based healthcare with green computing technologies,” Comput. Electr. Eng., vol. 101, Jul. 2022, Art. no. 108025. [CrossRef] [Google Scholar]
  8. Bhuyan H. K., Ravi Vinayakumar, Yadav M. S. Multi-objective optimization-based privacy in data mining, Cluster computing, Vol 25, issue 6, pages 4275-4287 2022. [CrossRef] [Google Scholar]
  9. B. O. Soufiene, A. A. Bahattab, A. Trad, and H. Youssef, “LSDA: Lightweight secure data aggregation scheme in healthcare using IoT,” in Proc. 10th Int. Conf. Inf. Syst. Technol., Jun. 2020, pp. 1-4. [Google Scholar]
  10. A. Papadopoulos, F. Topouzis, and A. Delopoulos, “An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images,” Sci. Rep., vol. 11, no. 1, pp. 1–15, Dec. 2021. [NASA ADS] [CrossRef] [Google Scholar]
  11. S. Yu et al., “MIL-VT: Multiple instance learning enhanced vision transformer for fundus image classification,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2021, pp. 45-54. [Google Scholar]
  12. Bhuyan H. K., Kamila N. K., Pani S. K., Individual privacy in data mining using fuzzy optimization, Engineering Optimization, Taylor & Francis, Vol. 54, Issue 8, pp. 1305-1323, 2022. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Davoudi and P. Thulasiraman, “Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem,” Simulation, vol. 97, no. 8, pp. 511–527, 2021. [CrossRef] [Google Scholar]
  14. C. I. Sánchez, M. Niemeijer, A. V. Dumitrescu, M. S. Suttorp-Schulten, M. D. Abràmoff, and B. van Ginneken, “Evaluation of a computeraided diagnosis system for diabetic retinopathy screening on public data,” Investigative Ophthalmol. Vis. Sci., vol. 52, no. 7, pp. 4866–4871, Jun. 2011. [CrossRef] [Google Scholar]
  15. C. Chakraborty, K. Mishra, S. K. Majhi, H. K. Bhuyan, Intelligent Latency-aware tasks prioritization and offloading strategy in Distributed Fog-Cloud of Things, IEEE Transactions on Industrial Informatics, VOL. 19, NO. 2, February 2023. [Google Scholar]
  16. Hemanta Kumar Bhuyan, Vinay Kumar Ravi, An Integrated Framework with Deep learning for Segmentation and Classification of Cancer Disease, Int J. on Artificial In-telligence Tools (IJAIT), Vol. 32, No. 02, 2340002 (2023) [CrossRef] [Google Scholar]
  17. S. Qummar et al., “A deep learning ensemble approach for diabetic retinopathy detection,” IEEE Access, vol. 7, pp. 150530–150539, 2019. [CrossRef] [Google Scholar]
  18. K. Shankar, E. Perumal, and R. M. Vidhyavathi, “Deep neural network with moth search optimization algorithm based detection and classification of diabetic retinopathy images,” Social Netw. Appl. Sci., vol. 2, no. 4, pp. 1–10, Apr. 2020. [Google Scholar]
  19. Bhuyan H. K., A. Vijayaraj, Vinay Kumar Ravi, Development of Secrete Images in Image Transferring System, Multimedia Tools and Applications 82 (5), 7529-7552. 2023 (SCIE) [CrossRef] [Google Scholar]
  20. A. Vijayaraj, Hemanta Kumar Bhuyan, P.T. Vasanth Raj, M. Vijay Anand, Congestion Avoidance Using Enhanced Blue Algorithm, Wireless Personal Communications 128 (3), 1963-1984 2023. [CrossRef] [Google Scholar]
  21. A. He, T. Li, N. Li, K. Wang, and H. Fu, “CABNet: Category attention block for imbalanced diabetic retinopathy grading,” IEEE Trans. Med. Imag., vol. 40, no. 1, pp. 143–153, Jan. 2021. [CrossRef] [Google Scholar]
  22. J. Wang, J. Luo, B. Liu, R. Feng, L. Lu, and H. Zou, “Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm,” IET Comput. Vis., vol. 14, no. 1, pp. 1–8, Feb. 2020. [CrossRef] [MathSciNet] [Google Scholar]
  23. Bhuyan H. K., Chakraborty C., Pani S. K., Ravi Vinay Kumar Feature and Sub-Feature Selection for Classification using Correlation Coefficient and Fuzzy model, IEEE Transaction on Engineering Management, Volume: 70, Issue: 5, May 2023. [Google Scholar]
  24. Hemanta Kumar Bhuyan, Vinay Kumar Ravi, Analysis of Sub-feature for Classifica-tion in Data Mining, IEEE Transaction on Engineering Management, 2021. [Google Scholar]
  25. X. Li, X. Hu, L. Yu, L. Zhu, C.-W. Fu, and P.-A. Heng, “CANet: Cross disease attention network for joint diabetic retinopathy and diabetic macular edema grading,” IEEE Trans. Med. Imag., vol. 39, no. 5, pp. 1483–1493, May 2019. [Google Scholar]
  26. S.-I. Pao, H.-Z. Lin, K.-H. Chien, M.-C. Tai, J.-T. Chen, and G.-M. Lin, “Detection of diabetic retinopathy using bichannel convolutional neural network,” J. Ophthalmology, vol. 2020, pp. 1–7, Jun. 2020. [CrossRef] [Google Scholar]
  27. Bhuyan H. K., M. Saikiran, Tripathy M., Vinayakumar Ravi, Wide-ranging approach-based feature selection for classification, Multimedia Tools and Ap-plications, pages: 1-28, 2022. [Google Scholar]
  28. Bhuyan H. K., Ravi Vinayakumar Brahma B., Kamila N. K., Disease analysis using machine learning approaches in healthcare system, Health and Technology, Vol. 12, Issue 5, pages: 987-1005, 2022. [CrossRef] [Google Scholar]
  29. Y. Liu, Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional neural networks for hyperspectral image denoising,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1-8. [Google Scholar]
  30. A. Martín, R. Lara-Cabrera, F. Fuentes-Hurtado, V. Naranjo, and D. Camacho, “EvoDeep: A new evolutionary approach for automatic deep neural networks parametrisation,” J. Parallel Distrib. Comput., vol. 117, pp. 180–191, Jul. 2018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.