Open Access
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 05017
Number of page(s) 11
Section Machine Learning & Neural Networks
Published online 09 August 2023
  1. Zhongbo Bai, Xiaomei Bai, “Sports Big Data: Management, Analysis, Applications, and Challenges”, Complexity, Article ID 6676297, 11 pages, vol. 2021 (2021). [Google Scholar]
  2. S. S. Sawant, C. B. Dongre, A. D. Dolas, Oxygen Demand Forecasting with Data Analytics, in P. Mahalle, R. Talware, G. Patil, S. Sakahre, P. Futane, Y. Dandawate (Eds) book “Artificial Intelligence in Information and Communication Technologies, Healthcare and Education, CRC Press, 1st Edition, Boca Ronton Florida, USA, (2022) [Google Scholar]
  3. Bohdan L. Kaluzny, Data analytics in military human performance: Getting in the game: Summary of a keynote address, Journal of Science and Medicine in Sport, Vol (24) Issue 10, (2021) [Google Scholar]
  4. Huang, J., Chai, J. & Cho, S. Deep learning in finance and banking: A literature review and classification. Front. Bus. Res. China 14, 13 (2020). [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Moghar, M. Hamiche, Stock Market Prediction Using LSTM Recurrent Neural Network, Procedia Computer Science, vol 170, (2020) [Google Scholar]
  6. S. S. Sawant, D. Bobby, A. Dusane, G. Durge (in press), Crop Yield Prediction and Leaf Disease Detection Using Machine Learning, Smart Innovations and Technological Advancements in Civil and Mechanical Engineering, CRC Press, July (2023) [Google Scholar]
  7. S. A. Kumar, A. Kumar, A. Dhanraj, A. Thakur, “Earthquake Prediction using Machine Learning”, IRJET, 8 (2021). [Google Scholar]
  8. P. Bangar, D. Gupta, S. Gaikwad, B. Marekar, J. Patil, “Earthquake Prediction using Machine Learning Algorithm”, IJRTE, vol 8 (2020). [Google Scholar]
  9. D. T. Nandwani and V. Buradkar, “Earthquake Damage Prediction using Machine Learning” vol(10) 7 July-(2022). [Google Scholar]
  10. T. K. Bhandar, V. N. Satish, S. Sridhar, R. Sivakumar, and S. Ghosh. “Earthquake trend prediction using long short-term memory rnn”, IJECE, vol 9 (2019). [Google Scholar]
  11. H. S. Kuyuk, and O. Susumu, “Real time classification of earthquake using deep learning” Procedía Computer Science vol 140 (2018), 298 (305). [CrossRef] [Google Scholar]
  12. K. Asim, A. Idris, T. Iqbal, and F. Martínez-Álvarez, “Earthquake prediction model using support vector regressor and hybrid neural networks”, PLOS ONE, vol 13 (2018). [Google Scholar]
  13. Jena, R., Pradhan, B. Integrated ANN-cross-validation and AHP-TOPSISmodel to improve earthquake risk assessment. Int. J. Disast. Risk Reduction 50, 101723 (2020). [CrossRef] [Google Scholar]
  14. K. M. Asim, A. Idris, F. Mart’mez-A’ Ivarez and T. Iqbal, “Short Term Earthquake Prediction in Hindukush Region Using Tree Based Ensemble Learning,” International Conference on Frontiers of Information Technology (FIT), Islamabad, (2012) pp. 365-370 [Google Scholar]
  15. A. E. Ruano, G. Madureira, O. Barros, H. R. Khosravani, M. G. Ruano, P. M. Ferreira “A Support Vector Machine Seismic Detector for Early-Warning Applications”, IFAC Proceedings vol 51, (2013) pp. 400-405. [Google Scholar]
  16. M. C. Mariani, H. Gonzalez, Huizar, M. A. M. Bhuiyan, O. K. Twenwboah. “Using Dynamic Fourier Analysis to Discriminate Between Seismic Signals from Natural Earthquakes and Mining Explosions”, AIMS Geosciences, vol 3 (3), 438-449 (2019). [Google Scholar]
  17. Carrara A., Guzzetti F., Cardinali M., Reichenbach P. “Use of GIS technology in the prediction and monitoring of landslide hazard” (1999). [Google Scholar]
  18. M. Bhatia, T. A. Ahanger, A. Manocha, Artificial intelligence based real-time earthquake prediction Engineering Applications of Artificial Intelligence, vol 120, (2023). [Google Scholar]
  19. Y. Zhu, F. Liu, X. You, W. Liang, Y. Zhao, Lian Liu “Earthquake Prediction from China’s mobile gravity data, Geodesy and geodynamics, vol (6), Issue 2, (2015). [Google Scholar]
  20. A. Pyakurel, B. K. Dahal, D. Gautam, Does machine learning adequately predict earthquake induced landslides?, Soil Dynamics and Earthquake Engineering, vol 171, (2023). [Google Scholar]
  21. W. Wang, L. Li, Z. Qu, Machine learning-based collapse prediction for post- earthquake damaged RC columns under subsequent earthquakes, Soil Dynamics and Earthquake Engineering, vol 172 (2023). [Google Scholar]
  22. C. Cosgun, Machine learning for the prediction of evaluation of existing reinforced concrete structures performance against earthquakes, Structures, vol 50, (2023). [Google Scholar]
  23. K. C. Sajan, A. Bhusal, D. Gautam, R. Rupakhety, Earthquake damage and rehabilitation intervention prediction using machine learning, Engineering Failure Analysis, vol 144, (2023). [Google Scholar]
  24. S. Gentili, R. Di Giovambattista, Forecasting strong subsequent earthquakes in California clusters by machine learning, Physics of the Earth and Planetary Interiors, vol 327, (2022). [Google Scholar]
  25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.