Open Access
Issue |
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 14 | |
Section | Software Engineering & Information Technology | |
DOI | https://doi.org/10.1051/itmconf/20235701001 | |
Published online | 10 November 2023 |
- A. Atrash, Y. Essam, A. Tariq Wishah, T. Hosni Abul-Omreen, S. Abu-Naser, Modeling cognitive development of the balance scale task using ANN, IJAISR, 4 no. 9, (2020). [Google Scholar]
- G. Wang, Guotai, M. A Zuluaga, R. Pratt, M. Aertsen, T. Doel, M. Klusmann, A. L David, J. Deprest, T. Vercauteren, S. Ourselin, Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views, Med Image Analy., 34, 137-147, (2016). [CrossRef] [Google Scholar]
- M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural networks, Medical image analysis, 35, 18-31, (2017). [CrossRef] [Google Scholar]
- A. Rehman, M. Attique Khan, T. Saba, Z. Mehmood, U. Tariq, N. Ayesha, Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture, Microscopy Research and Technique, 84 no.1, 133-149, (2021). [CrossRef] [Google Scholar]
- R. Thavasimuthu, K. P. Sridhar, S. Manimurugan., Recent innovations in soft computing applications, Current Signal Transduction Therapy, 14 no. 2, 129-130, (2019). [CrossRef] [Google Scholar]
- P. Valsalan, P. Sriramakrishnan, S. Sridhar, G. Latha, A. Priya, S. Ramkumar, A. Robert Singh, T. Rajendran, Knowledge-based fuzzy c-means method for rapid brain tissues segmentation of magnetic resonance imaging scans with CUDA enabled GPU machine, Journal of Ambient Intelligence and Humanized Computing, 1-14, (2020). [Google Scholar]
- M. Sharif, U. Tanvir, E.U. Munir, M. Khan, M. Yasmin, Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection, Journal of ambient intelligence and humanized computing, 1-20, (2018). [Google Scholar]
- A. Gummi, M. Mehedi Hassan, M. Rafiul Hassan, A. Alelaiwi, G. Fortino, A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification, IEEE Access, 7, 36266-36273, (2019). [CrossRef] [Google Scholar]
- H. Mohsen, E. Sayed E. Dahshan, E. Horbaty, A. Badeeh., Classification using deep learning neural networks for brain tumors, Future Computing and Informatics Journal, 3 no.1, 68-71, (2018). [CrossRef] [Google Scholar]
- S. Hussain, S. Anwar, M. Majid, Segmentation of glioma tumors in the brain using deep convolutional neural network, Neurocomputing, 282, 248-261, (2018). [CrossRef] [Google Scholar]
- D.R. Nayak, N. Padhy, P. K. Mallick, D. K. Bagal, S. Kumar, Brain Tumour Classification Using Noble Deep Learning Approach with Parametric Optimization through Metaheuristics Approaches, Computers, 11 no. 1, 10, (2022). [CrossRef] [Google Scholar]
- D. Santos, E. Santos, Brain Tumor Detection Using Deep Learning, medRxiv, (2022). [Google Scholar]
- E. Bayoumi, M. Ellah, A, Khalaf, R. Gharieb, Brain Tumor Automatic Detection from MRI Images Using Transfer Learning Model with Deep Convolutional Neural Network. Journal of Advanced Engineering Trends, 41 no. 2, 19-30, (2021). [CrossRef] [Google Scholar]
- S. Deepak, P. M. Ameer, Automated categorization of brain tumor from MRI using CNN features and SVM, Journal of Ambient Intelligence and Humanized Computing, 12 no. 8, 8357-8369, (2021). [CrossRef] [Google Scholar]
- E. Irmak, Multi-classification of brain tumor MRI images using a deep convolutional neural network with the fully optimized framework, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45 no. 3, 1015-1036, (2021). [CrossRef] [Google Scholar]
- S. Jadhav, R., S. Salve, H. Mohagaonkar, A. Rakibe, N. Langade, Brain Tumor Detection using Convolutional Neural Network, Brain, 7 no. 01, (2020). [Google Scholar]
- J. Amin, M. Sharif, N. Gul, M. Yasmin, S. Ali Shad, Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network, Pattern Recognition Letters, 129, 115-122, (2020). [CrossRef] [Google Scholar]
- S. Kumar, P. Mankame, Optimization is driven deep convolution neural network for brain tumor classification, Biocybernetics and Biomedical Engineering, 40 no. 3, 1190-1204, (2020). [CrossRef] [Google Scholar]
- A. Shihab Ahmed, ON-Line MRI Image Selection and Tumor Classification using Artificial Neural Network, Ibn AL-Haitham Journal for Pure and Applied Sciences, 33 no. 1, 162-172, (2020). [CrossRef] [Google Scholar]
- F. Özyurt, E. Sert, E. Avci, E. Dogantekin, Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy, Measurement, 147, 106830, (2019). [CrossRef] [Google Scholar]
- M. Kaur, B. Prajapat, Automated Classification of Cancerous Brain Tumours Using Haarlet Transform and Probabilistic Neural Network. in International Conference on Advanced Computing Networking and Informatics, 19-25, Springer, Singapore, (2019). [Google Scholar]
- R.S. Rakshita, P. S. Sanjana, S. Hoysal, Y. C. Kiran., Identification of Brain Tumor using Probabilistic Neural Networks and K-Means Segmentation, IRJET, 7, 21752180, (2020). [Google Scholar]
- H. Kaur, J. Rani, MRI brain image enhancement using Histogram equalization Techniques, IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 770-773, (2016). [Google Scholar]
- H. Mohsen, E.A. El-Dahshan, E.M. El-Horbaty, A.M. Salem, Brain Tumor Type Classification Based on Support Vector Machine in Magnetic Resonance Images, Annals of “Dunarea De Jos” University of Galati, Mathematics, Physics, Theoretical Mechanics, Fascicle II, Year IX (XL), (2017). [Google Scholar]
- H. Mohsen, E A. El-Dahshan, E. M. El-Horbaty, A. M. Salem, Classification using deep learning neural networks for brain tumors, Future Computing and Informatics Journal, 3, 68-71, (2018). [CrossRef] [Google Scholar]
- N. Varuna Shree, T. N. R. Kumar, Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network., Brain informatics, 5, 23-30, (2018). [CrossRef] [Google Scholar]
- C. Mason, J. Net Twomey, D. Wright, L. Whitman. “Predicting engineering student attrition risk using a probabilistic neural network and comparing results with a backpropagation neural network and logistic regression.” Research in Higher Education, 59, no. 3, 382-400, (2018). [CrossRef] [Google Scholar]
- B. Mostafa, N. El-Attar, S. Abd-Elhafeez, W. A. Awad, Machine and Deep Learning Approaches in Genome: Review Article, Alfarama Journal of Basic & Applied Sciences, (2020). [Google Scholar]
- M. Alweshah, A. Al-Daradkeh, M. Azmi Al-Betar, A. Almomani, S. Oqeili, β-hill climbing algorithm with probabilistic neural network for classification problems, Journal of Ambient Intelligence and Humanized Computing, 11 no. 8, 3405-3416, (2020). [CrossRef] [Google Scholar]
- M. Bouillon, R. Ingold, M. Liwicki., Gratification: a meaningful grayscale conversion to improve handwritten historical documents analysis., Pattern Recognition Letters, 121, 46-51, (2019). [CrossRef] [Google Scholar]
- Y. Zhang, J. Yang, F. Hou, Y. Liu, Y. Wang, J. Tian, C. Zhong, Y. Zhang, and Z. He, Semi-supervised cardiac image segmentation via label propagation and style transfer. in International Workshop on Statistical Atlases and Computational Models of the Heart, Springer, Cham, 219-227, (2020). [Google Scholar]
- F. Breve, Interactive image segmentation using label propagation through complex networks, Expert Systems with Applications, 123, 18-33, (2019). [CrossRef] [Google Scholar]
- T. Wang, Z. Ji, Q. Sun, Q. Chen, Qi, Ge, J. Yang. Diffusive likelihood for interactive image segmentation., Pattern Recognition, 79, 440-451, (2018). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.