Open Access
Issue |
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 9 | |
Section | Software Engineering & Information Technology | |
DOI | https://doi.org/10.1051/itmconf/20235701005 | |
Published online | 10 November 2023 |
- R.C. Gonzales, R.E. Woods, Digital Image Processing (2018) [Google Scholar]
- G.N. Kislyansky, E.S. Nestrugina, Restoration of defocused and blurred images, Bulletin of Donetsk National University, Series G: Technical Sciences 4, 41-53. – EDN MUFFIG (2020) [Google Scholar]
- K. Zeng, Y. Wang, J. Mao, J. Liu, W. Peng and N. Chen, A local metric for defocus blur detection based on CNN feature learning, in IEEE Transactions on Image Processing, 28, no. 5, pp. 2107-2115, May 2019, (2019) [CrossRef] [Google Scholar]
- G. Wang, Z. Wang, K. Gu, L. Li, Z. Xia and L. Wu, Blind quality metric of DIBRsynthesized images in the discrete wavelet transform domain, in IEEE Transactions on Image Processing, 29, pp. 1802-1814, 2020, (2020) [CrossRef] [Google Scholar]
- B.E. Boult, M.C. Chiang, Local blur estimation and super-resolution. In Proc. IEEE, Computer Society Conference on Computer Vision and Pattern Recognition, pp. 821-826, June 1997, (1997) [Google Scholar]
- X. Marichal, Wei-Ying Ma, H.J. Zhang, Blur determination in the compressed domain using DCT information. In Proc. IEEE, International Conference on Image Processing, 2:386–390, October 1999 (1999) [Google Scholar]
- P. Marziliano, F. Dufaux, S. Winkler T. Ebrahimi, A no-reference perceptual blur metric. In Proc. IEEE, International Conference on Image Processing, 3:57–60, June 2002, (2002) [Google Scholar]
- Dolmiere T., Ladret P. Crete F, The blur effect: Perception and estimation with a new no-reference perceptual blur metric. SPIE Electronic Imaging Symposium. Conference: Human Vision and Electronic Imaging, (2007) [Google Scholar]
- J. Caviedes, S. Gurbuz, No-reference sharpness metric based on local edge kurtosis. In Proc. IEEE, International Conference on Image Processing, 3:53–56, June 2002, (2002) [Google Scholar]
- A. Stefano, A. Leal, S. Richiusa, P. Trang, A. Comelli, V. Benfante, S. Cosentino, M.G. Sabini, A. Tuttolomondo, R. Altieri, F. Certo, G.M.V. Barbagallo, M. Ippolito, G. Russo, Robustness of PET radiomics features: Impact of co-registration with MRI. Applied Sciences 11(21), 10170 (2021) [CrossRef] [Google Scholar]
- V. Benfante, A. Stefano, A. Comelli, P. Giaccone, F.P. Cammarata, S. Richiusa, F. Scopelliti, M. Pometti, M. Ficarra, S. Cosentino, M. Lunardon, F. Mastrotto, A. Andrighetto, A. Tuttolomondo, R. Parenti, M. Ippolito, G. Russo, A new preclinical decision support system based on PET radiomics: A preliminary study on the evaluation of an innovative 64Cu-labeled chelator in mouse models. Journal of Imaging 8(4): 92 (2022) [CrossRef] [Google Scholar]
- D. Tumakov, Z. Kayumov, A. Zhumaniezov, D. Chikrin, D. Galimyanov, Elimination of defects in mammograms caused by a malfunction of the device matrix. Journal of Imaging 8(5):128 (2022) [CrossRef] [Google Scholar]
- J.J.M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R.G.H Beets-Tan, J.C. Fillion-Robin, S. Pieper, H.J.W.L Aerts, Computational radiomics system to decode the radiographic phenotype. Cancer Research 77(21), 104107 (2017) [Google Scholar]
- M. Iori, C. Di Castelnuovo, L. Verzellesi, G. Meglioli, D.G. Lippolis, A. Nitrosi, F. Monelli, G. Besutti, V. Trojani, M. Bertolini, A. Botti, G. Castellani, D. Remondini, R. Sghedoni, S. Croci, C. Salvarani, Mortality prediction of COVID-19 patients using radiomic and neural network features extracted from a wide chest X-ray sample size: A robust approach for different medical imbalanced scenarios. Applied Sciences 2022, 12(8), 3903 (2022) [Google Scholar]
- P. Alongi, R. Laudicella, F. Panasiti, A. Stefano, A. Comelli, P. Giaccone, A. Arnone, F. Minutoli, N. Quartuccio, C. Cupidi, G. Arnone, T. Piccoli, L.M.E Grimaldi, S. Baldari, G. Russo, Radiomics analysis of brain [18F]FDG PET/CT to predict Alzheimer’s disease in patients with amyloid PET positivity: A preliminary report on the application of SPM cortical segmentation, pyradiomics and machine-learning analysis. Diagnostics 12(4), 933 (2022) [CrossRef] [Google Scholar]
- I. Daimiel Naranjo, P. Gibbs, J.S. Reiner, R. Lo Gullo, S.B. Thakur, M.S. Jochelson, N. Thakur, P.A.T. Baltzer, T.H. Helbich, K. Pinker, Breast lesion classification with multiparametric breast MRI using radiomics and machine learning: A comparison with radiologists’ performance. Cancers 14(7), 1743 (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.