Open Access
Issue
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
Article Number 01017
Number of page(s) 14
Section Software Engineering & Information Technology
DOI https://doi.org/10.1051/itmconf/20235701017
Published online 10 November 2023
  1. Singh, N., Kumar, M., Singh, B. et al. DeepSpacy-NER: an efficient deep learning model for named entity recognition for Punjabi language. Evolving Systems 14, 673–683 (2023). https://doi.org/10.1007/s12530-022-09453-1 [CrossRef] [Google Scholar]
  2. A. Mehmood, “Brain tumor localization and segmentation using mask RCNN, ” Frontiers of Computer Science, vol. 15, no. 6, article 156338, 2021. [Google Scholar]
  3. M. Kumar, “Recognition of offline handwritten Urdu characters using RNN and LSTM models, ” Multimedia Tools and Applications, vol. 82, no. 2, pp. 2053–2076, 2023. [CrossRef] [Google Scholar]
  4. Y. M. Al-Omari, S. N. H. S. Abdullah and K. Omar, “State-of-the-art in offline signature verification system, ” 2011 International Conference on Pattern Analysis and Intelligence Robotics, Kuala Lumpur, Malaysia, 2011, pp. 59-64, doi: 10.1109/ICPAIR.2011.5976912. [Google Scholar]
  5. S. N. Yanushkevich, et al. “Synthetic biometrics: a survey, ” in Proceedings of the International Joint Conference on Neural Networks (IJCNN ’06), pp. 676–683, Vancouver, Canada, July 2006. [Google Scholar]
  6. A. A. Ross, et al. Handbook of Biometrics, Springer, 2008. [Google Scholar]
  7. A. Nagar, et al. “Biometric template security, ” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 579416, 2008. [Google Scholar]
  8. S. Albahli, T. Nazir, A. Irtaza, and A. Javed, “Recognition and detection of diabetic retinopathy using DenseNet-65 based faster-RCNN, ” Computers, Materials and Continua, vol. 67, no. 2, pp. 1333–1351, 2021. [CrossRef] [Google Scholar]
  9. M. Nawaz, M. Masood, A. Javed et al., “Melanoma localization and classification through faster region-based convolutional neural networks and SVM, ” Multimedia Tools and Applications, vol. 80, no. 19, pp. 28953–28974, 2021. [CrossRef] [Google Scholar]
  10. M. Nawaz, T. Nazir, A. Javed et al., “An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization, ” Sensors, vol. 22, no. 2, p. 434, 2022. [CrossRef] [Google Scholar]
  11. S. Pashine, R. Dixit, and R. Kushwah, “Handwritten digit recognition using machine and deep learning algorithms, ” 2021, http://arxiv.org/abs/2106.12614. [Google Scholar]
  12. V. Athila and A. S. Chandran, “Comparative analysis of algorithms used in handwritten digit recognition, ” International Research Journal of Engineering and Technology, vol. 8, no. 6, 2021. [Google Scholar]
  13. H. H. Zhao and H. Liu, “Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition, ” Granular Computing, vol. 5, no. 3, pp. 411–418, 2020. [CrossRef] [Google Scholar]
  14. E. A. Enriquez, N. Gordillo, L. M. Bergasa, E. Romera, and C. G. Huélamo, “Convolutional neural network vs traditional methods for offline recognition of handwritten digits,” in Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855, R. Fuentetaja Pizán, Á. García Olaya, M. Sesmero Lorente, J. Iglesias Martínez, and A. Ledezma Espino, Ed., Springer, Cham, 2019. [Google Scholar]
  15. D. Y. Ge, X. F. Yao, W. J. Xiang, X. J. Wen, and E. C. Liu, “Design of high accuracy detector for MNIST handwritten digit recognition based on convolutional neural network, ” in 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 658–662, Xiangtan, China, 2019. [Google Scholar]
  16. A. Beikmohammadi and N. Zahabi, “A hierarchical method for Kannada-MNIST classification based on convolutional neural networks, ” in 2021 26th International Computer Conference, Computer Society of Iran (CSICC), pp. 1–6, Tehran, Iran, 2021. [Google Scholar]
  17. A. K. Agrawal, “Design of CNN based model for handwritten digit recognition using different optimizer techniques, ” Turkish Journal of Computer Mathematics Education, vol. 12, no. 12, pp. 3812–3819, 2021. [Google Scholar]
  18. W. S. Wijesoma, K. W. Yue, K. L. Chien, and T. K. Chow, “Online handwritten signature verification for electronic commerce over the internet, ” in Web Intelligence: Research and Development, vol. 2198 of Lecture Notes in Computer Science, pp. 227–236, Springer, 2001. [CrossRef] [Google Scholar]
  19. S. Nanavati, M. Thieme, and R. Nanavati, “Other leading behavioral biometrics,” in Biometrics: Identity Verification in a Networked World, chapter 9, pp. 123–131, John Wiley & Sons, New York, NY, USA, 2002. [Google Scholar]
  20. Y. M. Al-Omari, S. N. H. S. Abdullah, and K. Omar, “State-of-the-art in offline signature verification system, ” in Proceedings of the International Conference on Pattern Analysis and Intelligent Robotics (ICPAIR ’11), vol. 1, pp. 59–64, June 2011. [CrossRef] [Google Scholar]
  21. S. N. Yanushkevich, “Synthetic biometrics: a survey, ” in Proceedings of the International Joint Conference on Neural Networks (IJCNN ’06), pp. 676–683, Vancouver, Canada, July 2006. [Google Scholar]
  22. A. K. Jain, P. Flynn, and A. A. Ross, Handbook of Biometrics, Springer, 2008. [CrossRef] [Google Scholar]
  23. K. Nandakumar, A. K. Jain, and A. Nagar, “Biometric template security, ” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 579416, 2008. [Google Scholar]
  24. E. Maiorana, P. Campisi, J. Fierrez, J. Ortega-Garcia, and A. Neri, “Cancelable templates for sequence-based biometrics with application to on-line signature recognition, ” IEEE Transactions on Systems, Man, and Cybernetics A: Systems and Humans, vol. 40, no. 3, pp. 525–538, 2010. [CrossRef] [Google Scholar]
  25. E. A. Rua, E. Maiorana, J. L. A. Castro, and P. Campisi, “Biometric template protection using universal background models: An application to online signature, ” IEEE Transactions on Information Forensics and Security, vol. 7, no. 1, pp. 269–282, 2012. [CrossRef] [Google Scholar]
  26. E. Grosso, L. Pulina, and M. Tistarelli, “Modeling biometric template update with ant colony optimization, ” in Proceedings of the 5th IAPR International Conference on Biometrics (ICB ’12), pp. 506–511, New Delhi, India, April 2012. [Google Scholar]
  27. F. H. Alvarez and L. H. Encinas, “Security efficiency analysis of a biometric fuzzy extractor for iris templates,” in Computational Intelligence in Security for Information Systems, vol. 63 of Advances in Intelligent and Soft Computing, pp. 163–170, Springer, Berlin, Germany, 2009. [Google Scholar]
  28. A. Nagar, K. Nandakumar, and A. K. Jain, “Biometric template transformation: a security analysis, ” in Media Forensics and Security II, 75410, vol. 7541 of Proceedings of SPIE, San Jose, Calif, USA, January 2010. [Google Scholar]
  29. S. Rashidi, A. Fallah, and F. Towhidkhah, “Feature extraction based DCT on dynamic signature verification, ” Scientia Iranica, vol. 19, no. 6, pp. 1810–1819, 2012. [CrossRef] [Google Scholar]
  30. I. A. Ismail, T. El danf, M. A. Ramadan, and A. H. Samak, “Automatic signature recognition and verification using principal components analysis, ” in Proceedings of the 5th International Conference on Computer Graphics, Imaging and Visualisation, Modern Techniques and Applications (CGIV ’08), pp. 356–361, IEEE, Penang, Malaysia, August 2008. [Google Scholar]
  31. N. Xu, Y. Guo, L. Cheng, X. Wu, and J. Zhao, “A method for online signature verification based on neural network, ” in Proceedings of the IEEE 3rd International Conference on Communication Software and Networks (ICCSN ’11), pp. 357–360, Xi’an, China, May 2011. [Google Scholar]
  32. A. U. Khan, T. K. Bandopadhyaya, and S. Sharma, “Comparisons of stock rates prediction accuracy using different technical indicators with backpropagation neural network and genetic algorithm based backpropagation neural network, ” in Proceedings of the 1st International Conference on Emerging Trends in Engineering and Technology (ICETET ’08), pp. 575–580, July 2008. [Google Scholar]
  33. A. H. Monahan, “Nonlinear principal component analysis by neural networks: theory and application to the Lorenz system, ” Journal of Climate, vol. 13, no. 4, pp. 821–835, 2000. [CrossRef] [Google Scholar]
  34. S. M. S. Ahmad, A. Shakil, A. R. Ahmad, M. A. Muhamad, and R. M. Anwar, “SIGMA—a Malaysian signature’s database, ” in Proceedings of the IEEE/ACS International Conference on Computer Systems and Applications, pp. 919–920, March 2008. [Google Scholar]
  35. M. Suganthy and P. Ramamoorthy, “Principal component analysis based feature extraction, morphological edge detection and localization for fast iris recognition, ” Journal of Computer Science, vol. 8, no. 9, pp. 1428–1433, 2012. [CrossRef] [Google Scholar]
  36. N. Xu, L. Cheng, Y. Guo, X. Wu, and J. Zhao, “A method for online signature verification based on neural network, ” in Proceedings of the IEEE 3rd International Conference on Communication Software and Networks (ICCSN ’11), pp. 357–360, Xi’an, China, May 2011. [Google Scholar]
  37. A. Shukla, J. Dhar, C. Prakash, D. Sharma, R. K. Anand, and S. Sharma, “Intelligent biometric system using PCA and R-LDA, ” in Proceedings of the WRI Global Congress on Intelligent Systems (GCIS ’09), vol. 1, pp. 267–272, Xiamen, China, May 2009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.