Open Access
Issue
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
Article Number 02007
Number of page(s) 15
Section Electronics Circuits & Systems
DOI https://doi.org/10.1051/itmconf/20235702007
Published online 10 November 2023
  1. S. Junji et al., “A Development of a Digital Image Database for Chest Radiographs With and Without a Lung Nodule: Receiver Operating Characteristic Analysis of Radiologists’ Detection of Pulmonary Nodules, ” American journal of roentgenology, vol. 174, pp. 71–74, 2000, [Online]. Available: www.macnet.or.jp/jsrt2/ [CrossRef] [Google Scholar]
  2. P. Campadelli, E. Casiraghi, and D. Artioli, “A fully automated method for lung nodule detection from postero-anterior chest radiographs, ” IEEE Trans Med Imaging, vol. 25, no. 12, pp. 1588–1603, Dec. 2006, doi: 10.1109/TMI.2006.884198. [CrossRef] [Google Scholar]
  3. M. Sezgin and B. lent Sankur, “Survey over image thresholding techniques and quantitative performance evaluation, ” J Electron Imaging, vol. 13, no. 1, p. 220, Jan. 2004, doi: 10.1117/1.1631316. [CrossRef] [Google Scholar]
  4. E. Soleymanpour, H. R. Pourreza, E. Ansaripour, and M. S. Yazdi, “Fully Automatic Lung Segmentation and Rib Suppression Methods to Improve Nodule Detection in Chest Radiographs, ” Journal of medical signals and sensor, vol. 1, pp. 191–199, 2011. [Google Scholar]
  5. W. S. H. M. Wan Ahmad, W. M. D. W Zaki, and M. F. Ahmad Fauzi, “Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter, ” Biomed Eng Online, vol. 14, no. 1, Mar. 2015, doi: 10.1186/s12938-015-0014-8. [Google Scholar]
  6. W. Liu, J. Luo, Y. Yang, W. Wang, J. Deng, and L. Yu, “Automatic lung segmentation in chest X-ray images using improved U-Net, ” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598022-12743-y. [Google Scholar]
  7. P. Pattrapisetwong and W. Chiracharit, “Automatic Lung Segmentation in Chest Radiographs Using Shadow Filter and Local Thresholding, ” in IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2016, pp. 1–6. [Google Scholar]
  8. W. L. Lee, K. Chang, and K. S. Hsieh, “Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models, ” Med Biol Eng Comput, vol. 54, no. 9, pp. 1409–1422, Sep. 2016, doi: 10.1007/s11517-015-1412-6. [CrossRef] [Google Scholar]
  9. T. A. Ngo and G. Carneiro, “LUNG SEGMENTATION IN CHEST RADIOGRAPHS USING DISTANCE REGULARIZED LEVEL SET AND DEEP-STRUCTURED LEARNING AND INFERENCE, ” in IEEE International Conference on Image Processing (ICIP), 2015, pp. 2140–2143. [Google Scholar]
  10. S. Candemir et al., “Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration, ” IEEE Trans Med Imaging, vol. 33, no. 2, pp. 577–590, Feb. 2014, doi: 10.1109/TMI.2013.2290491. [CrossRef] [Google Scholar]
  11. Y. Shao, Y. Gao, Y. Guo, Y. Shi, X. Yang, and D. Shen, “Hierarchical lung field segmentation with joint shape and appearance sparse learning, ” IEEE Trans Med Imaging, vol. 33, no. 9, pp. 1761–1780, 2014, doi: 10.1109/TMI.2014.2305691. [CrossRef] [Google Scholar]
  12. R. Deshpande, R. E. Ramalingam, P. Chatzistergos, V. Jasani, and N. Chockalingam, “Semiautomated lung field segmentation in scoliosis radiographs: An exploratory study, ” J Med Biol Eng, vol. 35, no. 5, pp. 608–616, Oct. 2015, doi: 10.1007/s40846-015-0084-x. [CrossRef] [Google Scholar]
  13. O. I. Singh, O. James, T. Sinam, and T. R. Singh, “Local Contrast and Mean based Thresholding Technique in Image Binarization, ” Int J Comput Appl, vol. 51, no. 6, pp. 975–8887, 2012. [Google Scholar]
  14. B. van Ginneken, M. B. Stegmann, and M. Loog, “Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database, ” Med Image Anal, vol. 10, no. 1, pp. 19–40, Feb. 2006, doi: 10.1016/j.media.2005.02.002. [CrossRef] [Google Scholar]
  15. T. R. Singh, S. Roy, O. I. Singh, T. Sinam, and K. M. Singh, “A New Local Adaptive Thresholding Technique in Binarization, ” International Journal of Computer Science, vol. 8, no. 6, 2011, [Online]. Available: www.IJCSI.org [Google Scholar]
  16. S. S. Parveen and C. Kavitha, “A REVIEW ON COMPUTER AIDED DETECTION AND DIAGNOSIS OF LUNG CANCER NODULES, ” International Journal of Computers & Technology, vol. 3, no. 3, pp. 393–400, 2012, [Online]. Available: www.cirworld.com [CrossRef] [Google Scholar]
  17. L. Zheng and Y. Lei, “A Review of Image Segmentation Methods for Lung Nodule Detection Based on Computed Tomography Images, ” in MATEC Web of Conferences, EDP Sciences, Nov. 2018. doi: 10.1051/matecconf/201823202001. [Google Scholar]
  18. S. Hu, E. A. Hoffman, and J. M. Reinhardt, “Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images, ” IEEE Trans Med Imaging, vol. 20, no. 6, 2001. [Google Scholar]
  19. M. N. Saad, Z. Muda, N. S. Ashaari, and H. A. Hamid, “Image Segmentation for Lung Region in Chest X-ray Images using Edge Detection and Morphology, ” in IEEE International Conference on Control System, Computing and Engineering, 2014, pp. 46–51. [Google Scholar]
  20. A. Dawoud, “Lung segmentation in chest radiographs by fusing shape information in iterative thresholding, ” IET Computer Vision, vol. 5, no. 3, pp. 185–190, May 2011, doi: 10.1049/ietcvi.2009.0141. [CrossRef] [Google Scholar]
  21. Z. Shi, P. Zhou, L. He, T. Nakamura, Q. Yao, and H. Itoh, “Lung segmentation in chest radiographs by means of Gaussian kernel-based FCM with spatial constraints, ” in 6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009, 2009, pp. 428–432. doi: 10.1109/FSKD.2009.811. [Google Scholar]
  22. T. Cootes, “An Introduction to Active Shape Models,” in Image Processing and Analysis, Ed.R. Baldock and J. Graham, Ed., Oxford University Press, 2000, pp. 223–248. [Google Scholar]
  23. S. A. Patil and V. R. Udupi, “Chest X-ray features extraction for lung cancer classification, ” J Sci Ind Res (India), vol. 69, pp. 271–277, 2010. [Google Scholar]
  24. A. M. R. Schilham, B. Van Ginneken, and M. Loog, “Multi-scale Nodule Detection in Chest Radiographs, ” in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2003, pp. 602–609. [Online]. Available: http://www.isi.uu.nl [Google Scholar]
  25. S. Juhász, Á. Horváth, L. Nikházy, and G. Horváth, “Segmentation of Anatomical Structures on Chest Radiographs, ” in MEDICON 2010, IFMBE Proceedings 29, 2010, pp. 359–362. [Online]. Available: www.springerlink.com [Google Scholar]
  26. T. F. Cootes, A. Hill, C. J. Taylor, and J. Hastam, “Use of active shape models for locating structures in medical images, ” Image Vis Comput, vol. 12, no. 6, pp. 355–365, 1994. [CrossRef] [Google Scholar]
  27. P. Annangi, S. Thiruvenkadam, A. Raja, H. Xu, X. Sun, and L. Mao, “A REGION BASED ACTIVE CONTOUR METHOD FOR X-RAY LUNG SEGMENTATION USING PRIOR SHAPE AND LOW LEVEL FEATURES, ” in IEEE International Symposium on Biomedical Imaging, IEEE, 2010, pp. 892–895. [Google Scholar]
  28. J.-S. Lee, H.-H. Wu, and M.-Z. Yuan, “Lung Segmentation for Chest Radiograph by Using Adaptive Active Shape Models, ” in 2009 Fifth International Conference on Information Assurance and Security, IEEE Computer Society, 2009. [Google Scholar]
  29. D. K. Lakovidis and M. Savelonas, “Active Shape Model Aided by Selective Thresholding for Lung Field Segmentation in Chest Radiographs, ” in 9th International Conference on Information Technology and Applications in Biomedicine, [IEEE], 2009. [Google Scholar]
  30. B. Van Ginneken, A. F. Frangi, J. J. Staal, B. M. Ter Haar Romeny, and M. A. Viergever, “Active shape model segmentation with optimal features, ” IEEE Trans Med Imaging, vol. 21, no. 8, pp. 924–933, Aug. 2002, doi: 10.1109/TMI.2002.803121. [CrossRef] [Google Scholar]
  31. S. Sun, C. Bauer, and R. Beichel, “Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach, ” IEEE Trans Med Imaging, vol. 31, no. 2, pp. 449–460, Feb. 2012, doi: 10.1109/TMI.2011.2171357. [CrossRef] [Google Scholar]
  32. D. Kanade and J. Helonde, “Suppressing Chest Radiograph Ribs for Improving Lung Nodule Visibility by using Circular Window Adaptive Median Outlier (CWAMO).” [Online]. Available: www.ijacsa.thesai.org [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.