Open Access
Issue
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
Article Number 03004
Number of page(s) 11
Section Electrical Engineering
DOI https://doi.org/10.1051/itmconf/20235703004
Published online 10 November 2023
  1. Malhi, A., Yan, R., Gao, R.X.: Prognosis of defect propagation based on recurrent neural networks. IEEE Trans Instrum Meas 60(3), 703–711 (2011). [CrossRef] [Google Scholar]
  2. S. Zheng, K. Ristovski, A. K. Farahat, et al., Long short-term memory network for remaining useful life estimation, in Proc. ICPHM, Dallas, TX, USA, 2017, pp. 88–95. [Google Scholar]
  3. X. Li, Q. Ding, and J. Q. Sun, 2018. Remaining useful life estimation in prognostics using deep convolutional neural networks. Reliability Engineering & System Safety, 172, pp.1-11. [CrossRef] [Google Scholar]
  4. C. Louen, S. X. Ding, C. Kandler. A new framework for remaining use-ful life estimation using the Support Vector Machine classifier. Conference on Control and Fault-Tolerant Systems, 2013, pp. 228-233. [Google Scholar]
  5. S. K. Singh, S. Kumar, J. P. Dwivedi. A novel soft computing method for engine RUL prediction. Multimedia Tools and Applications, 2017, pp. 1-23. [Google Scholar]
  6. J. Ma, H. Su, W. L. Zhao, and B. Liu, 2018. Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning. Complexity, 2018. [Google Scholar]
  7. Huthaifa AL-Khazraji1, Ahmed R. Nasser1, Ahmed M. Hasan1, Ammar K. Al Mhdawi2, Hamed, Al-Raweshidy3, Amjad J. Humaidi1. Aircraft Engines Remaining Useful Life Prediction Based on A Hybrid Model of Autoencoder and Deep Belief Network. [Google Scholar]
  8. Lijun Liu1, 2 · Lan Wang1, Zhen Yu1. Remaining Useful Life Estimation of Aircraft Engines Based on Deep Convolution Neural Network and LightGBM Combination Model. [Google Scholar]
  9. Vimala Mathew, Tom Toby, Vikram Singh, B Maheswara Rao, M Goutham Kumar. Prediction of Remaining Useful Lifetime (RUL) of Turbofan Engine using Machine Learning. [Google Scholar]
  10. Hussein A. Taha, Ahmed H. Sakr, Soumaya Yacout. Aircraft Engine Remaining Useful Life Prediction Framework for Industry 4.0. [Google Scholar]
  11. Y. Peng, H. Wang, J. Wang, D. Liu, X. Peng. A modified echo state network based remaining useful life estimation approach. IEEE International Conference on Prognostics and Health Management. IEEE, 2012, pp. 1-7. [Google Scholar]
  12. C. Louen, S. X. Ding, C. Kandler. A new framework for remaining useful life estimation using Support Vector Machine classifier. Conference on Control and Fault-Tolerant Systems, 2013, pp. 228-233. [Google Scholar]
  13. G. S. Babu, P. Zhao, X. L. Li. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life. International Conference on Database Systems for Advanced Applications. Springer, 2016, pp. 214-228. [Google Scholar]
  14. S. K. Singh, S. Kumar, J. P. Dwivedi. A novel soft computing method for engine RUL prediction. Multimedia Tools and Applications, 2017, pp. 1-23. [Google Scholar]
  15. S. Zheng, K. Ristovski, A. Farahat, C. Gupta. Long Short-Term Memory Network for Remaining Useful Life estimation. IEEE International Conference on Prognostics and Health Management. IEEE, 2017, pp. 88-95. [Google Scholar]
  16. P. Lim, C. K. Goh, K. C. Tan. A time window neural network based framework for Remaining Useful Life estimation. International Joint Conference on Neural Networks. IEEE, 2016, pp. 1746-1753. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.