Open Access
Issue |
ITM Web Conf.
Volume 58, 2024
The 6th IndoMS International Conference on Mathematics and Applications (The 6th IICMA 2023)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 8 | |
Section | Statistics | |
DOI | https://doi.org/10.1051/itmconf/20245804002 | |
Published online | 09 January 2024 |
- Silitonga, Journal of Development Economics, 15, 1, 53-59 (2017) [Google Scholar]
- B. Indonesia, Foreign Currency Exchange Rates Against the Rupiah 1998-2017. Accessed in:https://www.kemndag.go.id/id/, accessed: 21 January 2023, at: 11.10 WITA (2018). [Google Scholar]
- Tan and Syamsurijal, International Economics (International Trade). First Printing. (Unja Faculty of Economics and Business, Jakarta, 2016) [Google Scholar]
- R. Dornbusch, S. Fischer, and R. Startz, Makroekonomi (PT Media Global Edukasi. 2004) [Google Scholar]
- N. Nopeline, and M.F. Siahaan, Vision of Social Sciences and Humanities (VISH), 1, 1 (2020) [Google Scholar]
- L. Azizah, E-Journal of Industrial and Monetary Trade, 7, 3 (2019) [Google Scholar]
- D.M. Rahmawati, Economics Development Analysis Journal UNNES, 28-35 (2014) [Google Scholar]
- Priestley and Chao, The Priestley-Chao Estimator. J. R. Stat. Soc., 34, 2, 1–7 (1972) [Google Scholar]
- Q. He, J. Inequalities Appl., 64, 1–13 (2019) [Google Scholar]
- M.A Adzim, Gaussian Kernel Function for Modeling UAN Data for SMA Al Ma’hadul Islami Beji Bangil Pasuruan. PhD thesis, Maulana Malik Ibrahim State Islamic University, Malang (2015) [Google Scholar]
- J.R. Wolbreg, Expert Trading Systems Modeling Financial Markets with Kernel Regression (John Wiley & Sons: New York 2000) [Google Scholar]
- H. Okumura, and K. Naito, Nonparametric Kernel Regression for Multinomial Data, Journal of Statistical Planning and Inference, 14 (2006) [Google Scholar]
- Suparti and Sudargo, Scientific Magazine “LONTAR”. 19, 4 (2005) [Google Scholar]
- G. Fudllayati, Analysis of Gross Domestic Product (GDP) with Kernel Nonparametric Regression Using the Priestley-Chao Estimator. Thesis, Sunan Ampel State University, Surabaya (2021) [Google Scholar]
- M.W. Maximum, Semiparametric Spline Regression Model for Longitudinal Data in Cases of Dengue Hemorrhagic Fever Sufferers in Makassar City. PhD thesis, Makasaar State University, Makassar (2019) [Google Scholar]
- Ampa, A, T, Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel, Sustainability, 14 (20), 13663 [Google Scholar]
- I.K.G. Sukarsa, and I.G.A.M. Srinadi, J. Matt, 2, 1, 19–30 (2012) [Google Scholar]
- W. Hardle, Introduction to Nonparametric Regression, http://www.quantlet.de. (1990) [CrossRef] [Google Scholar]
- I. Puspitasari, Suparti, and Y. Wilandari, Analysis of the Composite Stock Price Index (IHSG) Using the Kernel Regression Model. J. Gaussian, 1, 1, 93–102 (2012) [Google Scholar]
- A.I. Indrayanti, Cosine Kernel and Gaussian Kernel Estimators in Nonparametric Regression Models on Butterfly Data, 23rd Solar Activity Cycle Diagram (Case Study at BPD LAPAN Watukosek). PhD thesis, Maulana Malik Ibrahim State Islamic University, Malang (2014) [Google Scholar]
- T. Ayuningtyas, Nadaraya-Watson. Kernel Nonparametric Regression in Time Series Data (Case Study: Composite Stock Price Index on EXCHANGE, Inflation and Interest Rates for the Period January 2015 March 2018). PhD thesis, Indonesian Islamic University, Yogyakarta (2018) [Google Scholar]
- A.K, Konecn, The Priestley-Chao Estimator of Conditional Density with ´ Uniformly Distributed Random Design. Statistics, 98, 3, 283–294 (2018) [Google Scholar]
- A.T. Ampa, I.N. Budiantara, I. Zain, Selection of Optimal Smoothing Parameters in Mixed Estimator of Kernel and Fourier Series in Semiparametric Regression, J. Phys.: Conf. Ser. 21 23 012035 (2021) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.