Open Access
ITM Web Conf.
Volume 58, 2024
The 6th IndoMS International Conference on Mathematics and Applications (The 6th IICMA 2023)
Article Number 04006
Number of page(s) 14
Section Statistics
Published online 09 January 2024
  1. Bain, L. J., & Engelgardt, M, Introduction to Probability and Mathematical Statistics, Second Edition (Duxbury, California, 1992) [Google Scholar]
  2. Dianasari, T. Evaluasi Kinerja Backpropagation, Extreme Gradient Boosting, Feedforward Network Pada Klasifikasi Klien Berlangganan Deposito Berjangka (Universitas Gadjah Mada, Yogyakarta, 2019) [Google Scholar]
  3. Guo, L. (n.d.). Applying Data Mining Techniques in Property/Casualty Insurance. Florida: University of Central Florida. [Google Scholar]
  4. Han, J., Kamber, M., & Pei, J. Data Mining: Concepts and Techniques. Elsevier Inc, 3rd Edition (2012) [Google Scholar]
  5. Harris, M, Multiclass Classification with XGBoost in R (2017) [Google Scholar]
  6. Hidayat, A, Penjelasan Lengkap Tentang Analisis Cluster (2014) [Google Scholar]
  7. James, G., Witten, D., Hastie, T., & Tibshirani, R. (20113). An Introduction to StatisticaL Learning with Application in R. New York: Springer. [Google Scholar]
  8. Jasmi, R. Simple Tutorial on SVM and Parameter Tuning in Python and R (2017) [Google Scholar]
  9. Kassambara, A. CLARA in R: Clustering Large Applications (2018) [Google Scholar]
  10. Kassambara, A. Determining The Optimal Number Of Clusters: 3 Must Know Methods (2018) [Google Scholar]
  11. Kryńska, K. Using K-means and PAM clustering for Customer Segmentation (2018) [Google Scholar]
  12. Li, C. (n.d.). A Gentle Introduction to Gradient Boosting. [Google Scholar]
  13. Luo, Y., Pang, S., & Qiu, S. (2003). Fuzzy Cluster in Credit Scoring. Proceedings of the Second International Conference on Machine Learning and Cybernetics. Retrieved May 19, 2020. [Google Scholar]
  14. Magdalena, R, IFRS 17 Decoded (2019) [Google Scholar]
  15. Manish, S. (n.d.). Beginners Tutorial on XGBoost and Parameter Tuning in R. [Google Scholar]
  16. Muskitta, C. R., & Safitri, K. A. JABT, 2 (2019) [Google Scholar]
  17. Muslim, A. B. Analisis Klaster Menggunakan Metode Clara Pada Data Yang Mengandung Pencilan. (Universitas Gadjah Mada, Yogyakarta, 2018) [Google Scholar]
  18. Octavian, A. P., Wilandari, Y., & Ispriyanti, D, 811-820 (2014) [Google Scholar]
  19. Pradeep, S, Machine Learning Case study : SVM (2015) [Google Scholar]
  20. Rdusseeun, L. K. P. J., & Kaufman, P. Clustering By Means of Medoids. Proceedings of the Statistical Data Analysis Based on the L1 Norm Conference (1987) [Google Scholar]
  21. Muskitta, C. R., & Safitri, K. A, JABT, 2 (2019) [Google Scholar]
  22. Zhu, J., Rosset, S., Hui, Z., & Hastie, T. Multi-Class AdaBoost. (University of Michigan, Michigan, 2006) [Google Scholar]
  23. Zulhanif, Algoritma AdaBoost Dalam Pengklasifikasian. (Pendidikan Matematika UMS, Surakarta, 2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.