Open Access
Issue |
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 12 | |
Section | Hybrid Modeling and Optimization in Complex Systems: Advances and Applications | |
DOI | https://doi.org/10.1051/itmconf/20245901019 | |
Published online | 25 January 2024 |
- D.R. Jones, M. Schonlau, W.J. Welch, J Glob Optim 13, 4 (1998) [Google Scholar]
- S.A. Piyavskii, Comput. Math. Math. Phys. 12, 4 (1972) [Google Scholar]
- B.O. Shubert, SIAM J Numer Anal 9, 3 (1972) [Google Scholar]
- V.A. Grishagin, R.A. Israfilov, AIP Conf Proc 1738, 400010 (2016) [CrossRef] [Google Scholar]
- D. Jones, J. Martins, J Glob Optim 79, 3 (2021) [Google Scholar]
- R. Paulavicius, J. Zilinskas, Simplicial Global Optimization (Springer, New York, 2014) [CrossRef] [Google Scholar]
- R. Paulavicius, Y.D. Sergeyev, D.E. Kvasov, J. Zilinskas, Expert Syst. Appl. 144, 113052 (2020) [CrossRef] [Google Scholar]
- Y.D. Sergeyev, D.E. Kvasov, Deterministic global optimization: An introduction to the diagonal approach (Springer, New York, 2017) [CrossRef] [Google Scholar]
- L. Liberti, S. Kucherenko, Int Trans Oper Res 12 (2005) [Google Scholar]
- Y.D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, Sci. Rep. 8, 1 (2018) [Google Scholar]
- Y.D. Sergeyev, R.G. Strongin, D. Lera, Introduction to global optimization exploiting space-filling curves (Springer Briefs in Optimization, Springer, New York, 2013) [CrossRef] [Google Scholar]
- R.G. Strongin, Y.D. Sergeyev, Global optimization with non-convex constraints. Sequential and parallel algorithms (Kluwer Academic Publishers, Dordrecht, 2000) [CrossRef] [Google Scholar]
- A. Candelieri, F. Archetti, Soft Comput. 23 (2019) [Google Scholar]
- A. Cassioli, D. Di Lorenzo, M. Locatelli et al., Comput Optim Appl 51 (2012) [Google Scholar]
- M.K. Bisbo, B. Hammer, Phys. Rev. B 105, 245404 (2022) [CrossRef] [Google Scholar]
- S. Zhao, E. Louidor, M. Gupta, Proceedings of the 39th International Conference on Machine Learning, PMLR 162 (2022) [Google Scholar]
- S. Wu, Y. Hu, W. Wang, X. Feng, W. Shu, Math. Probl. Eng. 2013 (2013) [Google Scholar]
- M. Feurer, F. Hutter, Hyperparameter Optimization (Automated Machine Learning, 2019) [Google Scholar]
- J. Bergstra, Y. Bengio, J Mach Learn Res 13 (2012) [Google Scholar]
- D. von Winterfeldt, E. Ward, Decision Analysis and Behavioral Research (1986) [Google Scholar]
- A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54 (2017) [Google Scholar]
- J. Wang, S.C. Clark, E. Liu, P.I. Frazier, Oper Res 68 (2016) [Google Scholar]
- R. Horst, J Optim Theory Appl 58, 1 (1988) [CrossRef] [MathSciNet] [Google Scholar]
- R. Horst, H. Tuy, J Optim Theory Appl 54, 2 (1987) [Google Scholar]
- V.A. Grishagin, Y.D. Sergeyev, R.G. Strongin, J Glob Optim 10, 2 (1997) [Google Scholar]
- J.D. Pinter, Global Optimization in Action (Kluwer Academic Publishers, Dordrecht, 1996) [Google Scholar]
- Y.D. Sergeyev, Optimization 44, 3 (1998) [Google Scholar]
- K.A. Barkalov, I.G. Lebedev, Commun. Comput. Inf. Sci. 687 (2016) [Google Scholar]
- V.P. Gergel, J Glob Optim 10, 3 (1997) [Google Scholar]
- K.A. Barkalov, Comput. Math. Math. Phys. 42, 9 (2002) [Google Scholar]
- C.T. Kelley, Iterative Methods for Optimization (SIAM, Philadelphia, 1999) [Google Scholar]
- D. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1972) [Google Scholar]
- S. Brahmbhatt, Practical OpenCV (Apress, New York, 2013) [CrossRef] [Google Scholar]
- M. Gaviano, D.E. Kvasov, D. Lera, Y.D. Sergeyev, ACM Trans Math Softw 29, 4 (2003) [Google Scholar]
- K.A. Barkalov, V.P. Gergel, J Glob Optim, 66, 1 (2016) [CrossRef] [Google Scholar]
- D.R. Jones, Direct Global Optimization Algorithm (Encyclopedia of Optimization, 2009) [Google Scholar]
- J.M. Gablonsky, C.T. Kelley, J Glob Optim 21, 1, (2001) [Google Scholar]
- Breast Cancer Wisconsin (Diagnostic) Data Set. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) [Google Scholar]
- Chih-Chung Chang, Chih-Jen Lin, ACM Trans Intell Syst Technol 2, 27 (2011) [CrossRef] [Google Scholar]
- P.A. Flach, M. Kull, Proceedings of the 28th Advances in Neural Information Processing Systems (2015) [Google Scholar]
- T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019) [Google Scholar]
- J. Bergstra, D. Yamins, D.D. Cox, Proceedings of the 12th Python in Science Conference (2013) [Google Scholar]
- K.A. Barkalov, V.A. Grishagin, E.A. Kozinov, Lect. Notes Comput. Sci. 13621 (2022) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.