Open Access
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
Article Number 02023
Number of page(s) 9
Section Interdisciplinary Mathematical Modeling and Applications
Published online 25 January 2024
  1. J. Branke, Evolutionary approaches to dynamic environments—updated survey, in: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, 27–30, (2001) [Google Scholar]
  2. S.X. Yang, Y.S. Ong, Y.C. Jin et al., Evolutionary Computation in Dynamic and Uncertain Environments (Springer-Verlag, Berlin, Heidelberg, 2007) [CrossRef] [Google Scholar]
  3. T.T. Nguyen, S.X. Yang, J. Branke, Swarm and evolutionary computation 6, 1–24, (2012) [CrossRef] [Google Scholar]
  4. D. Yazdani, J. Branke, M. N. Omidvar, C.H. Li, Generalized Moving Peaks Benchmark, Computer Science, (2021) [Google Scholar]
  5. A.R. Gonçalves, F.J.V. Zuben, Online learning in estimation of distribution algorithms for dynamic environments, IEEE Congress on Evolutionary Computation, 62–69, (2011) [Google Scholar]
  6. L. Schönemann, Evolution strategies in dynamic environments, Evolutionary Computation in Dynamic and Uncertain Environments, 51–77, (2007) [Google Scholar]
  7. P.A. Vikhar, Evolutionary algorithms: A critical review and its future prospects, Information Computing and Communication, 261–265, (2016) [Google Scholar]
  8. T. Bäck, H.P. Schwefel, Evolutionary Computation 1, 1–23, (1993) [CrossRef] [Google Scholar]
  9. D. Davendra, I. Zelinka, R. Senkerik, M. Pluhacek, IBICA 303 (2014) [Google Scholar]
  10. C. Klanke, S. Engell, Computers & Industrial Engineering 174 (2022) [Google Scholar]
  11. J.H. Holland, Genetic algorithm, Scientific American 267, 66–73 (1960) [Google Scholar]
  12. J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95- International Conference on Neural Networks, IEEE, 1942–1948, (1995) [Google Scholar]
  13. R.M. Storn, K. Price, Journal of global optimization 11, 341–359 (1997) [CrossRef] [Google Scholar]
  14. Y. Su, G.L. Kong, Modern Electronics Technique 40, 175–178 (2017) [Google Scholar]
  15. S.X. Yang, H. Richter, Hyper-learning for population in-cremental learning in dynamic environments, Proceeding of 2009 IEEE Congress on Evolutionary Computation, 682–689, (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.