Open Access
Issue
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
Article Number 03017
Number of page(s) 6
Section Data Mining, Machine Learning and Patern Recognition
DOI https://doi.org/10.1051/itmconf/20245903017
Published online 25 January 2024
  1. M. Deprez, and E.C. Robinson. Machine Learning for Biomedical Applications: With Scikit-Learn and PyTorch (Elsevier Science, 2023) [Google Scholar]
  2. World Health Organization. https://www.ilae.org/files/dmfile/WHO-Summary_EpilepsyPublicHealthImperative-Russian.pdf [Google Scholar]
  3. L. Egorova, L. Kazakovtsev, I. Rozhnov, et al., AIP Conference Proceedings, 2402 50040 [Google Scholar]
  4. S. Omari, M. Kimwele, A. Olowolayemo, et al. Enhancing EEG Signals Classification using LSTM-CNN Architecture (Authorea, 2023) [Google Scholar]
  5. Z. Wang, T. Oates, Imaging time-series to improve classification and imputation Proceedings of International Joint Conference on Artificial Intelligence. 2015. pp. 3939–3945. [Google Scholar]
  6. I. Obeid, J. Picone, Frontiers in Neuroscience, 10, 196 (2016). [CrossRef] [Google Scholar]
  7. A. Harati, S. López, I. Obeid, J. Picone, The TUH EEG Corpus: a Big Data Resource for Automated EEG Interpretation. Signal Processing in Medicine and Biology Symposium (SPMB), IEEE (2014), pp. 1–5. [Google Scholar]
  8. M. Kaufmann. Data Mining (In The Morgan Kaufmann Series in Data Management Systems, 2012) https://doi.org/10.1016/B978-0-12-381479-1.00018-6. [Google Scholar]
  9. A.D. Bragin, V.G. Spitsyn, Computer Optics, 44(3), 482–487 (2020) [Google Scholar]
  10. A. Krizhevsky, I. Sutskever, G. Hinton, Neural Information Processing Systems 25 3065386 (2012) [Google Scholar]
  11. L. R. Shirokova, V. N. Loginov, Proceedings of MIPT 12(4) 90–96 (2020) [Google Scholar]
  12. A. Paszke, S. Gross, F. Massa et al., Advances in Neural Information Processing Systems 32. PyTorch: An Imperative Style, High-Performance Deep Learning Library. (Curran Associates, Inc. 2019) pp. 8024–8035 [Google Scholar]
  13. A.L. Gomorov, Using Gram Angular Field Matrices for Converting Electroencephalograms in Motor Pattern Classification. Youth and modern information technologies: collection of proceedings of the XX International Scientific and Practical Conference of Students, Postgraduate Students and Young Scientists (Tomsk, March 20–22, 2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.