Open Access
Issue
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
Article Number 04004
Number of page(s) 9
Section Adaptive Intelligence: Exploring Learning in Evolutionary Algorithms and Neural Networks
DOI https://doi.org/10.1051/itmconf/20245904004
Published online 25 January 2024
  1. A. Stöckl, Evaluating a Synthetic Image Dataset Generated with Stable Diffusion. arXiv preprint arXiv:2211.01777 (2022) [Google Scholar]
  2. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, L. Fei-Fei arXiv preprint arXiv:1409.0575 (2015) [Google Scholar]
  3. C.B. Choy, D. Xu, J. Gwak, K. Chen, S. Savarese, 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. arXiv preprint arXiv:1604.00449 (2016) [Google Scholar]
  4. H. Fan, H. Su, L. J. Guibas, A point set generation network for 3d object reconstruction from a single image. arXiv preprint arXiv:1612.00603 (2017) [Google Scholar]
  5. M. Tatarchenko, A. Dosovitskiy, T. Brox, Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. arXiv preprint arXiv:1703.09438 (2017) [Google Scholar]
  6. H. Kato, Y. Ushiku, T. Harada, Neural 3d mesh renderer. arXiv preprint arXiv:1711.07566 (2018) [Google Scholar]
  7. T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, M. Aubry, A papier-mâché approach to learning 3d surface generation. arXiv preprint arXiv:1802.05384 (2018) [Google Scholar]
  8. B. Yang, S. Rosa, A. Markham, N. Trigoni, H. Wen, Dense 3D object reconstruction from a single depth view. arXiv preprint arXiv:1802.00411 (2018) [Google Scholar]
  9. N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, Y. G. Jiang, Pixel2mesh: Generating 3d mesh models from single rgb images. arXiv preprint arXiv:1804.01654 (2018) [Google Scholar]
  10. L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, A. Geiger, Occupancy networks: Learning 3d reconstruction in function space. arXiv preprint arXiv:1812.03828 (2019) [Google Scholar]
  11. H. Xie, H. Yao, X. Sun, S. Zhou, S. Zhang, Pix2vox: Context-aware 3d reconstruction from single and multi-view images. arXiv preprint arXiv:1901.11153 (2019) [Google Scholar]
  12. Z. Murez, T. Van As, J. Bartolozzi, A. Sinha, V. Badrinarayanan, A. Rabinovich, Atlas: End-to-end 3d scene reconstruction from posed images. arXiv preprint arXiv:2003.10432 (2020) [Google Scholar]
  13. H. Xie, H. Yao, S. Zhang, S. Zhou, W. Sun arXiv preprint arXiv:2006.12250 (2020) [Google Scholar]
  14. S. Popov, P. Bauszat, V. Ferrari, Corenet: Coherent 3d scene reconstruction from a single rgb image. arXiv preprint arXiv:2004.12989. (2020). [Google Scholar]
  15. G. Gkioxari, J. Malik, J. Johnson, Mesh r-cnn. arXiv preprint arXiv:1906.02739 (2019) [Google Scholar]
  16. M.J. Tyszkiewicz, K.K. Maninis, S. Popov, V. Ferrari, RayTran: 3D pose estimation and shape reconstruction of multiple objects from videos with ray-traced transformers. arXiv preprint arXiv:2203.13296 (2022) [Google Scholar]
  17. M. Dahnert, J. Hou, M. Nießner, A. Dai, Panoptic 3d scene reconstruction from a single rgb image. arXiv preprint arXiv:2111.02444 (2021) [Google Scholar]
  18. A.X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, F. Yu arXiv preprint arXiv:1512.03012 (2015) [Google Scholar]
  19. X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, W. T. Freeman, Pix3d: Dataset and methods for single-image 3d shape modeling. arXiv preprint arXiv:1804.04610 (2018) [Google Scholar]
  20. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3d shapenets: A deep representation for volumetric shapes. arXiv preprint arXiv:1406.5670 (2015) [Google Scholar]
  21. C.R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation. arXiv preprint arXiv:1612.00593 (2017) [Google Scholar]
  22. L. Jiang, H. Zhao, S. Shi, S. Liu, C. W. Fu, J. Jia, Pointgroup: Dual-set point grouping for 3d instance segmentation. arXiv preprint arXiv:2004.01658 (2020) [Google Scholar]
  23. W. Zhao, Y. Yan, C. Yang, J. Ye, X. Yang, K. Huang, Divide and Conquer: 3D Point Cloud Instance Segmentation With Point-Wise Binarization. arXiv preprint arXiv:2207.11209 (2022) [Google Scholar]
  24. C. Liu, Y. Furukawa arXiv preprint arXiv:1902.04478 (2019) [Google Scholar]
  25. H. Chen, Q. Dou, L. Yu, P. A. Heng arXiv preprint arXiv:1608.05895 (2016) [Google Scholar]
  26. P. Peresunko, D. Mamatin, O. Antamoshkin, E. Peresunko, A. Nikitin, Models of Experts for Shaders Estimation of Rendering Complex 3D Scenes in Real Time. 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.