Open Access
Issue
ITM Web Conf.
Volume 60, 2024
2023 5th International Conference on Advanced Information Science and System (AISS 2023)
Article Number 00007
Number of page(s) 6
DOI https://doi.org/10.1051/itmconf/20246000007
Published online 09 January 2024
  1. A. Wang. An Industrial Strength Audio Search Algorithm. In: Proceedings of the 4th International Society for Music Information Retrieval Conference, ISMIR (2003). [Google Scholar]
  2. A. Singh, K. Demuynck, and V. Arora. Attentionbased audio embeddings for query-by-example. In: Proceedings of the 23rd International Society for Music Information Retrieval Conference, ISMIR (2022), 52–58. [Google Scholar]
  3. M. Müller. Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications. Springer International Publishing, 2015. [Google Scholar]
  4. J. Haitsma and T. Kalker. A Highly Robust Audio Fingerprinting System. In: Proceedings of the 3rd International Society for Music Information Retrieval Conference, ISMIR (2002), p. 9. [Google Scholar]
  5. J. Six and M. Leman. Panako A Scalable Acoustic Fingerprinting System Handling Time-Scale and Pitch Modification. In: Proceedings of the 15th International Society for Music Information Retrieval Conference, ISMIR (2014). [Google Scholar]
  6. Y. Ke, D. Hoiem, and R. Sukthankar. Computer Vision for Music Identification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1 (2005), 597–604. [Google Scholar]
  7. B. A. y Arcas et al. Now Playing: Continuous LowPower Music Recognition. In: arXiv:1711.10958 [cs, eess] (2017). [Google Scholar]
  8. Z. Yu et al. Contrastive unsupervised learning for audio fingerprinting. In: arXiv preprint arXiv:2010.13540 (2020). [Google Scholar]
  9. J. P. Boon, A. Noullez, and C. Mommen. Complex Dynamics and Musical Structure. In: Interface 19.1 (1990), 3–14. [CrossRef] [Google Scholar]
  10. T. Cheng, S. Fukayama, and M. Goto. Comparing RNN Parameters for Melodic Similarity. In: Proceedings of the 19th International Society for Music Information Retrieval Conference, ISMIR (2018), 763–770. [Google Scholar]
  11. A. Báez-Suárez et al. SAMAF: Sequence-toSequence Autoencoder Model for Audio Fingerprinting. In: Proceedings of the ACM Transactions on Multimedia Computing, Communications, and Applications, TOMM 16.2 (2020). [Google Scholar]
  12. X. Zhang et al. SIFT-Based Local Spectrogram Image Descriptor: A Novel Feature for Robust Music Identification. In: Journal on Audio, Speech, and Music Processing, EURASIP 2015.1 (2015), p. 6. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Chang et al. Neural Audio Fingerprint for High-Specific Audio Retrieval Based on Contrastive Learning. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (2021), 3025–3029. [Google Scholar]
  14. X. Wu and H. Wang. Asymmetric Contrastive Learning for Audio Fingerprinting. In: IEEE Signal Processing Letters 29 (2022), 1873–1877. [CrossRef] [Google Scholar]
  15. M. Kaya and H.S¸. Bilge. Deep Metric Learning: A Survey. In: Symmetry 11.9 (2019). [Google Scholar]
  16. C. Schörkhuber and A. Klapuri. Constant-Q transform toolbox for music processing. In: Proceedings of the 7th Sound and Music Computing Conference, SMC (2010), 3–64. [Google Scholar]
  17. F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2015), 815–823. [Google Scholar]
  18. K. Benzi et al. FMA: A Dataset For Music Analysis. In: Proceedings of the 18th International Society for Music Information Retrieval Conference, ISMIR (2017). [Google Scholar]
  19. J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. In: Journal of Machine Learning Research 12.61 (2011), 2121–2159. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.