Open Access
ITM Web Conf.
Volume 60, 2024
2023 5th International Conference on Advanced Information Science and System (AISS 2023)
Article Number 00016
Number of page(s) 6
Published online 09 January 2024
  1. A. Bates, D. J. Tian, K. R. Butler, T. Moyer, Trustworthy Whole-System provenance for the linux kernel, in 24th USENIX Security Symposium (2015). [Google Scholar]
  2. M. N. Hossain, S. M. Milajerdi, et al., SLEUTH: Real-time attack scenario reconstruction from COTS audit data, in 26th USENIX Security Symposium (2017). [Google Scholar]
  3. A. Goel, K. Po, K. Farhadi, Z. Li, E.De. Lara, The taser intrusion recovery system, in Proceedings of the twentieth ACM symposium on Operating systems principles (2005). [Google Scholar]
  4. W. U. Hassan, S. Guo, et al., A. Bates, Nodoze: Combatting threat alert fatigue with automated provenance triage, in network and distributed systems security symposium (2019). [Google Scholar]
  5. Y. Kwon, F. Wang, et al., MCI: Modeling-based causality inference in audit logging for attack investigation, in Network and Distributed Systems Security (NDSS) Symposium (2018). [Google Scholar]
  6. T. Kim, X. Wang, N. Zeldovich, M. F. Kaashoek, Intrusion recovery using selective re-execution. In 9th USENIX Symposium on Operating Systems Design and Implementation (2010). [Google Scholar]
  7. S. T. King, P. M. Chen, Backtracking intrusions, in Proceedings of the nineteenth ACM symposium on Operating systems principles (2003). [Google Scholar]
  8. S. T. King, Z. M. Mao, et al., Enriching Intrusion Alerts Through Multi-Host Causality. In Ndss (2005). [Google Scholar]
  9. Y. Liu, M. Zhang, et al., Towards a Timely Causality Analysis for Enterprise Security, in NDSS (2018). [Google Scholar]
  10. S. Ma, X. Zhang, D. Xu, Protracer: Towards practical provenance tracing by alternating between logging and tainting, in 23rd Annual Network And Distributed System Security Symposium (2016). [Google Scholar]
  11. P. Gao, X. Xusheng, Z. Li, F. Xu, S. R. Kulkarni, P. Mittal, AIQL: Enabling efficient attack investigation from system monitoring data, in 2018 USENIX Annual Technical Conference (2018). [Google Scholar]
  12. K. H. Lee, X. Zhang, D. Xu, High Accuracy Attack Provenance via Binary-based Execution Partition, in NDSS (2013). [Google Scholar]
  13. Z. Xu, Z. Wu, et al., High fidelity data reduction for big data security dependency analyses, in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (2016). [Google Scholar]
  14. P. Fang, P. Gao, et al., Back-Propagating System Dependency Impact for Attack Investigation. In 31st USENIX Security Symposium (2022). [Google Scholar]
  15. J. Zeng, C. Zhang, Z. Liang, PalanTír: Optimizing Attack Provenance with Hardware-enhanced System Observability, in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (2022). [Google Scholar]
  16. K. H. Lee, X. Zhang, D. Xu, Loggc: garbage collecting audit log, in Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security (2013). [Google Scholar]
  17. O. Bachem, M. Lucic, et al., Fast and provably good seedings for k-means, advances in neural information processing systems, 29 (2016). [Google Scholar]
  18. J. Wen, X. Fang, et al., Robust sparse linear discriminant analysis, in IEEE Transactions on Circuits and Systems for Video Technology (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.