Open Access
Issue
ITM Web Conf.
Volume 64, 2024
2nd International Conference on Applied Computing & Smart Cities (ICACS24)
Article Number 01004
Number of page(s) 14
DOI https://doi.org/10.1051/itmconf/20246401004
Published online 05 July 2024
  1. Chatterjee, T. et al. (2022) ‘A Survey of VANET/V2X Routing From the Perspective of Non-Learningand Learning-Based Approaches’, IEEE Access, 10, pp. 23022–23050. Available at: https://doi.org/10.1109/ACCESS.2022.3152767. [CrossRef] [Google Scholar]
  2. Slama, O., Alaya, B. and Zidi, S. (2022) ‘Towards Misbehavior Intelligent Detection Using Guided Machine Learning in Vehicular Ad-hoc Networks (VANET)’, Inteligencia Artificial, 25(70), pp. 138–154. Available at: https://doi.org/10.4114/intartif.vol25iss70pp138-154. [CrossRef] [Google Scholar]
  3. Talpur, A. and Gurusamy, M. (2021) ‘Machine Learning for Security in Vehicular Networks: A Comprehensive Survey’. Available at: https://doi.org/10.1109/COMST.2021.3129079. [Google Scholar]
  4. Khatri, S. et al. (2021) ‘Machine learning models and techniques for VANET based traffic management: Implementation issues and challenges’, Peer-to-Peer Networking and Applications, 14(3), pp. 1778–1805. Available at: https://doi.org/10.1007/s12083-020-00993-4. [CrossRef] [Google Scholar]
  5. Amalia, A. et al. (2023) ‘A Deep-Learning-Based Secure Routing Protocol to Avoid Blackhole Attacks in VANETs †’, Sensors, 23(19). Available at: https://doi.org/10.3390/s23198224. [CrossRef] [Google Scholar]
  6. Gonçalves, F., Macedo, J. and Santos, A. (2021) ‘An intelligent hierachical security framework for vanets’, Information (Switzerland), 12(11). Available at: https://doi.org/10.3390/info12110455. [Google Scholar]
  7. Tan, K. et al. (2022) ‘Machine learning in vehicular networking: An overview’, Digital Communications and Networks. Chongqing University of Posts and Telecommunications, pp. 18–24. Available at: https://doi.org/10.1016/j.dcan.2021.10.007. [Google Scholar]
  8. Seth, I., Guleria, K. and Panda, S.N. (2022a) ‘Introducing Intelligence in Vehicular Ad Hoc Networks Using Machine Learning Algorithms’, ECS Transactions, 107(1), pp. 8395–8406. Available at: https://doi.org/10.1149/10701.8395ecst. [CrossRef] [Google Scholar]
  9. Marwah, G.P.K. and Jain, A. (2022) ‘A hybrid optimization with ensemble learning to ensure VANET network stability based on performance analysis’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-14255-1. [CrossRef] [Google Scholar]
  10. Srivastava, A., Prakash, A. and Tripathi, R. (2020) ‘Location based routing protocols in VANET: Issues and existing solutions’, Vehicular Communications. Elsevier Inc. Available at: https://doi.org/10.1016/j.vehcom.2020.100231. [Google Scholar]
  11. Mahi, M.J.N. et al. (2022) ‘A Review on VANET Research: Perspective of Recent Emerging Technologies’, IEEE Access. Institute of Electrical and Electronics Engineers Inc., pp. 65760–65783. Available at: https://doi.org/10.1109/ACCESS.2022.3183605. [CrossRef] [Google Scholar]
  12. Weber, J.S., Neves, M. and Ferreto, T. (2021) ‘VANET simulators: an updated review’, Journal of the Brazilian Computer Society, 27(1). Available at: https://doi.org/10.1186/s13173-021-00113-x. [CrossRef] [Google Scholar]
  13. Ravi, B. et al. (2023a) ‘Stochastic Modeling for Intelligent SoftwareDefined Vehicular Networks: A Survey’, Computers, 12(8). Available at: https://doi.org/10.3390/computers12080162. [CrossRef] [Google Scholar]
  14. Rashid, K. et al. (2023) ‘An Adaptive Real-Time Malicious Node Detection Framework Using Machine Learning in Vehicular Ad-Hoc Networks (VANETs)’, Sensors, 23(5). Available at: https://doi.org/10.3390/s23052594. [Google Scholar]
  15. Mustafa, A.S. et al. (2020) ‘VANET: Towards Security Issues Review’, in 2020 IEEE 5th International Symposium on Telecommunication Technologies, ISTT 2020 Proceedings. Institute of Electrical and Electronics Engineers Inc., pp. 151–156. Available at: https://doi.org/10.1109/ISTT50966.2020.9279375. [Google Scholar]
  16. Seth, I., Guleria, K. and Panda, S.N. (2022b) ‘Introducing Intelligence in Vehicular Ad Hoc Networks Using Machine Learning Algorithms’, ECS Transactions, 107(1), pp. 8395–8406. Available at: https://doi.org/10.1149/10701.8395ecst. [CrossRef] [Google Scholar]
  17. Hemalatha, R. and Samath, J.A. (2021) A Survey: Security Challenges of Vanet And Their Current Solution, Turkish Journal of Computer and Mathematics Education. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.