Open Access
Issue
ITM Web Conf.
Volume 64, 2024
2nd International Conference on Applied Computing & Smart Cities (ICACS24)
Article Number 01008
Number of page(s) 9
DOI https://doi.org/10.1051/itmconf/20246401008
Published online 05 July 2024
  1. P. Hu, H. Ning, T. Qiu, Y. Xu, X. Luo, A.K. Sangaiah, Future Gen. Comput. Syst. 81, 582–592 (2018) [CrossRef] [Google Scholar]
  2. A.S. Tolba, A.H. El-Baz, A.A. El-Harby, Int. J. Signal Process. 2, 88–103 (2006) [Google Scholar]
  3. L.C. Paul, A. Al Sumam, Int. J. Adv. Res. Comput. Eng. & Tech. (IJARCET) 1, 135139 (2012). [Google Scholar]
  4. C. Campbell, Y. Ying, Learning with Support Vector Machines (Springer Nature, 2022). [Google Scholar]
  5. E.Y. Boateng, J. Otoo, D.A. Abaye, J. Data Anal. Inform. Process. 8, 341–357 (2020). [Google Scholar]
  6. J. Anil, Meas. Sensors 30, 100907 (2023). [CrossRef] [Google Scholar]
  7. C. Li, Y. Huang, W. Huang, F. Qin, Pattern Recogn. 119, 108085 (2021). [CrossRef] [Google Scholar]
  8. Y. Wang, et al., J. Mach. Learn. Res. 22, 1–73 (2021) [Google Scholar]
  9. M. Chandrakala, P. Durga Devi, Mater. Today: Proc. 47, 5771–5775 (2021) [CrossRef] [Google Scholar]
  10. C. Fernández, M. Vicente, R. Ñeco, R. Puerto, Image Preprocessing for AppearanceBased Face Recognition, 2011. [Google Scholar]
  11. S. Ahmed, M. Frikha, T.D.H. Hussein, et al., BioMed Res. Int. 2021, 6621540 (2021) [CrossRef] [Google Scholar]
  12. A.W. Muzaffar, et al., IEEE Access 11, 60324–60334 (2023) [CrossRef] [Google Scholar]
  13. Y. Li, Y. Bi, W. Zhang, J. Ren, J. Chen, Appl. Sci. 13, 9409 (2023) [CrossRef] [Google Scholar]
  14. L. van der Maaten, G. Hinton, J. Mach. Learn. Res. 9, 2579–2605 (2008). [Google Scholar]
  15. M. Skrodzki, H. van Geffen, N.F. Chaves-de-Plaza, T. Hollt, E. Eisemann, K. Hildebrandt, IEEE Trans. Vis. Comput. Graph. (2024). [Google Scholar]
  16. E.J. Bredensteiner, K.P. Bennett, Comput. Optim. Appl. 12(1), 53–79 (1999). [CrossRef] [MathSciNet] [Google Scholar]
  17. V. Vapnik, Statistical Learning Theory (Wiley, 1998) [Google Scholar]
  18. Yale University, http://cvc.yale.edu/projects/yalefaces/yalefaces.html. [Google Scholar]
  19. AT&T Laboratories Cambridge, ORL Face Database, https://cam-orl.co.uk/facedatabase.html [Google Scholar]
  20. M.J. Lyons, M. Kamachi, J. Gyoba, Coding Facial Expressions with Gabor Wavelets (IVC Special Issue), Zenodo, 2020 [Google Scholar]
  21. M.J. Lyons, “Excavating AI” Re-excavated: Debunking a Fallacious Account of the JAFFE Dataset, arXiv preprint arXiv:2107.13998, 2021 [Google Scholar]
  22. T. Ojala, M. Pietikainen, T. Maenpaa, IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). [CrossRef] [Google Scholar]
  23. N. Dalal, B. Triggs, in 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR’05), 1, 886–893 vol. 1 (2005). [Google Scholar]
  24. S. Shojaeilangari, W.-Y. Yau, J. Li, E.-K. Teoh, in Proc. 12th Int. Conf. Control Autom. Robotics & Vision (ICARCV), IEEE, 2012, pp. 166–170. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.