Open Access
Issue |
ITM Web Conf.
Volume 64, 2024
2nd International Conference on Applied Computing & Smart Cities (ICACS24)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.1051/itmconf/20246401016 | |
Published online | 05 July 2024 |
- Clark, D. D., Partridge, C., Christopher Ramming, J., & Wroclawski, J. T., A Knowledge Plane for the Internet. Computer Communication Review, 33(4), 3-10, 2003. [Google Scholar]
- Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcn, E., Sol, M., MuntsMulero, V., Meyer, D., Barkai, S., Hibbett, M. J., Estrada, G., Ma ’ruf, K., Coras, F., Ermagan, V., Latapie, H., Cassar, C., Evans, J., Maino, F., Walrand, J., Muntes-Mulero, V. (2017). Knowledge-Defined Networking Artifacts Review for Knowledge-Defined Networking Knowledge-Defined Networking. ACM SIGCOMM Computer Communication Review, 47(3), 2-10, 2017. [CrossRef] [Google Scholar]
- Ali, O. M. A., Kareem, S. W., & Mohammed, A. S., Evaluation of electrocardiogram signals classification using CNN, SVM, and LSTM algorithm : A review. In 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC) (pp. 185-191). IEEE, 2022. [Google Scholar]
- Wang, M., Cui, Y., Wang, X., Xiao, S., & Jiang, J., Machine learning for networking: Workflow, advances and opportunities. IEEE Network, 32(2), 92-99, 2017. [Google Scholar]
- Ma, R., Kareem, S. W., Kalra, A., Doewes, R. I., Kumar, P., & Miah, S., Optimization of electric automation control model based on artificial intelligence algorithm. Wireless Communications and Mobile Computing, 2022. [Google Scholar]
- Guibao, X., Yubo, M., & Jialiang, L., The impact of Artificial Intelligence on communication networks and services. ITUJournal, 1(1), 33-38, 2018. [Google Scholar]
- CEKIC, J., & DUJANOVIC, P., Osnovi Metodologije Planiranja Zdravstvene Za Stite. Higijena; Casopis Za Higijenu, Mikrobiologiju, Epidemiologiju i Sanitamu Tehniku, 15(1), 3–15, 1963 [Google Scholar]
- Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R., Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 12(2), 493–501, 2019. [CrossRef] [Google Scholar]
- Latah, M., & Toker, L., Artificial intelligence enabled software-defined networking: A comprehensive overview. IET Networks, 8(2), 79–99, 2019 [CrossRef] [Google Scholar]
- Rusek, K., Suarez-Varela, J., Almasan, P., Barlet-Ros, P., & Cabellos-Aparicio, A., RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN. IEEE Journal on Selected Areas in Communications, 38(10), 2260–2270, 2020. [CrossRef] [Google Scholar]
- Mikhail, Dina Yousif, Roojwan Sc Hawezi, and Shahab WahhabKareem., “An Ensemble Transfer Leaming Model for Detecting Stego Images.”, Applied Sciences 13.12: 7021, 2023. [CrossRef] [Google Scholar]
- Kurochkin, I. I., & Volkov, S. S., Using GRU based deep neural network for intrusion detection in software-defined networks. IOP Conference Series: Materials Science and Engineering, 927(1), 2020. [Google Scholar]
- Heo, D., Lange, S., Kim, H.-G., & Choi, H., Graph Neural Network based Service Function Chaining for Automatic Network Control. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS), 7–12, 2020. [Google Scholar]
- Mohd Amiruddin, A. A. A., Zabiri, H., Jeremiah, S. S., Teh, W. K., & Kamaruddin, B., Valve stiction detection through improved pattern recognition using neural networks. Control Engineering Practice, 90(May), 63–84, 2019. [CrossRef] [Google Scholar]
- Chen, X. F., & Yu, S. Z., CIPA: A collaborative intrusion prevention architecture for programmable network and SDN. Computers and Security, 58, 1–19, 2016. [CrossRef] [Google Scholar]
- He, M., Kalmbach, P., Blenk, A., Kellerer, W., & Schmid, S., Algorithm-data driven optimization of adaptive communication networks. Proceedings International Conference on Network Protocols, ICNP, 2017. [Google Scholar]
- Alvizu, R., Troia, S., Maier, G., & Pattavina, A., Matheuristic with machine-learning based prediction for software-defined mobile metro-core networks. Journal of Optical Communications and Networking, 9(9), D19–D30, 2017 [CrossRef] [Google Scholar]
- Abubakar, A., & Pranggono, B., Feminismo masculino. 2015. [Google Scholar]
- Sabbeh, A., Al-Dunainawi, Y., Al-Raweshidy, H. S., & Abbod, M. F., Performance prediction of software defined network using an artificial neural network. Proceedings of 2016 SAI Computing Conference, SAI 2016, 80–84, 2016 [Google Scholar]
- Mihai-Gabriel, I., & Victor-Valeriu, P., Achieving DDoS resiliency in a software defined network by intelligent risk assessment based on neural networks and danger theory. CINTI 2014 15th IEEE International Symposium on Computational Intelligence and Informatics, Proceedings, 319–324, 2014 [Google Scholar]
- Sahoo, K. S., Tripathy, B. K., Naik, K., Member, S., & Ramasubbareddy, S., An Evolutionary SVM Model for DDOS Attack Detection in Software Defined Networks. 2020. [Google Scholar]
- Aslam, M., Ye, D., Hanif, M., & Asad, M., Machine Learning Based SON-enabled Distributed Denial-of-Services Attacks Detection and Mitigation System for Internet of Things. International Conference on Machine Learning for Cyber Security, 180–194, 2020. [Google Scholar]
- Zhao, J., Zeng, P., Shang, W., & Tong, G., DDoS Attack Detection Based on One-Class SVM in SDN. International Conference on Artificial Intelligence and Security, 189–200, 2020. [Google Scholar]
- Kyaw, A. T., Zin Oo, M., & Khin, C. S., Machine-Learning Based DDOS Attack Classifier in Software Defined Network. 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2020, 431–434, 2020. [Google Scholar]
- Aung, K. M., & Htaik, N. M., Anomaly Detection in SDN’s Control Plane using Combining Entropy with SVM. 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2020, 122–126, 2020. [Google Scholar]
- Phan, T. V., Bao, N. K., & Park, M., A Novel Hybrid Flow-Based Handler with DDoS Attacks in Software-Defined Networking. Proceedings 13th IEEE International Conference on Ubiquitous Intelligence and Computing, 13th IEEE International Conference on Advanced and Trusted Computing, 16th IEEE International Conference on Scalable Computing and Communications, IEEE International Conference on Cloud and Big Data Computing, IEEE International Conference on Internet of People and IEEE Smart World Congress and Workshops, UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld 2016, 350–357, 2017. [Google Scholar]
- Shang, G., Zhe, P., Bin, X., Aiqun, H., & Kui, R., Flood Defender: Protecting data and control plane resources under SDN-aimed DoS attacks. Proceedings IEEE INFOCOM, 2017. [Google Scholar]
- Hu, D., Hong, P., & Chen, Y., FADM: DDoS Flooding Attack Detection and Mitigation System in Software-Defined Networking, 2017 IEEE 30 Global Communications Conference, GLOBECOM 2017 Proceedings, 1–7, 2018-January [Google Scholar]
- Rego, A., Canovas, A., Jimenez, J. M., & Lloret, J., An Intelligent System for Video Surveillance in IoT Environments. IEEE Access, 6(c), 31580–31598, 2018. [CrossRef] [Google Scholar]
- Ali, M. A., Kareem, S. W., & Mohammed, A. S., Comparative evaluation for two and five classes ECG signal classification: applied deep learning. Journal of Algebraic Statistics, 13(3), 580–596, 2022. [Google Scholar]
- Mertens, J. S., Milotta, G. M., Nagaradjane, P., & Morabito, G., SDN-(UAV)ISE: Applying Software Defined Networking to Wireless Sensor Networks with Data Mules. 323–328, 2020. [Google Scholar]
- Owusu, A. I., & Nayak, A., An Intelligent Traffic Classification in SDN-IoT: A Machine Leaming Approach. 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 1–6, 2020. [Google Scholar]
- Reticcioli, E., Di Girolamo, G. D., Smarra, F., Carmenini, A., D’Innocenzo, A., & Graziosi, F., Leaming SDN traffic flow accurate models to enable queue bandwidth dynamic optimization. 2020 European Conference on Networks and Communications, EuCNC 2020, 231–235. 2020. [Google Scholar]
- Abbasi, M., Rezaei, H., Menon, V. G., Qi, L., & Khosravi, M. R., Enhancing the Performance of Flow Classification in SDN-Based Intelligent Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 1–10, 2020. [Google Scholar]
- Balta, M., & Ozi;elik, İ., A 3-stage fuzzy-decision tree model for traffic signal optimization in urban city via a SDN based VANET architecture. Future Generation Computer Systems, 104, 142–158, 2020. [CrossRef] [Google Scholar]
- Le, A., Dinh, P., Le, H., & Tran, N. C., Flexible Network-Based Intrusion Detection and Prevention System on Software-Defined Networks. 31 Proceedings 2015 International Conference on Advanced Computing and Applications, ACOMP 2015, 106–111, 2016. [Google Scholar]
- Nagarathna, R., & Shalinie, S. M., SLAMHHA: A supervised learning approach to mitigate host location hijacking attack on SDN controllers. 2017 4th International Conference on Signal Processing, Communication and Networking, ICSCN 2017. [Google Scholar]
- Tariq, F., & Baig, S., Botnet classification using centralized collection of network flow counters in software defined networks. International Journal of Computer Science and Information Security, 14(8), 1075–1080, 2016. [Google Scholar]
- Stimpfling, T., Belanger, N., Cherkaoui, 0., Beliveau, A., Beliveau, L., & Savaria, Y., Extensions to decision-tree based packet classification algorithms to address new classification paradigms. Computer Networks, 122, 83–95, 2017. [CrossRef] [Google Scholar]
- Tsogbaatar, E., Bhuyan, M. H., Taenaka, Y., Fall, D., Gonchigsumlaa, K., Elmroth, E., & Kadobayashi, Y., SON-Enabled IoT Anomaly Detection Using Ensemble Leaming. In IFIP Advances in Information and Communication Technology: Vol. 584 IFIP. Springer International Publishing, 2020. [Google Scholar]
- Miao, M., & Wu, B., A Flexible Phishing Detection Approach Based on Software Defined Networking Using Ensemble Leaming Method. Proceedings of the 2020 4th International Conference on High Performance, Compilation, Computing and Communications, 7073, 2020. [Google Scholar]
- Abar, T., Ben Letaifa, A., & El Asmi, S., Machine learning based QoE prediction in SDN networks. 2017 13th International Wireless Communications and Mobile Computing Conference, IWCMC 2017, 1395–1400, 2017. [Google Scholar]
- Amaral, P., Dinis, J., Pinto, P., Bernardo, L., Tavares, J., & Mamede, H. S., Machine learning in software defined networks: Data collection and traffic classification. Proceedings International Conference on Network Protocols, ICNP, 2016 December (Network:ML), 91–95, 2016. [Google Scholar]
- Zago, M., Ruiz Sanchez, V. M., Gil Perez, M., & Martinez Perez, G., Tackling Cyber Threats with Automatic Decisions and Reactions Based on Machine-Leaming Techniques. Presented at EuCNC’ 17: 2nd Conference on Network Management, Quality of Service and Security for 5G Networks, Held at European Conference on Networks and Communications, At Oulu (Finland), September 2017. [Google Scholar]
- Su, S. C., Chen, Y. R., Tsai, S. C., & Lin, Y. B., Detecting P2P Botnet in Software Defined Networks. Security and Communication Networks, 2018. [Google Scholar]
- Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., & Peng, J., XGBoost Classifier for DDoS Attack Detection and Analysis in SDN-Based Cloud. Proceedings 2018 IEEE International Conference on Big Data and Smart Computing, BigComp 2018, 251–256, 2018. [Google Scholar]
- Choudhury, G., Lynch, D., Thakur, G., & Tse, S., Two use cases of machine learning for SON-Enabled IP/Optical networks: Traffic matrix prediction and optical path performance prediction. ArXiv, 10(10), 52–62, 2018. [Google Scholar]
- Karwan, M., Abdullah, S., Amin, A. M., Mohamed, Z. A., Bestoon, B., Shekha, M., & Salihi, A., Cancer incidence in the Kurdistan region of Iraq: Results of a seven-year cancer registration in Erbil and Duhok Govemorates. Asian Pacific Journal of Cancer Prevention: APJCP, 23(2), 601, 2022. [CrossRef] [Google Scholar]
- Said Elsayed, M., Le-Khac, N.-A., Dev, S., & Jurcut, A. D., Network Anomaly Detection Using LSTM Based Autoencoder. Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, 37–45, 2020. [Google Scholar]
- Raikar, M. M., Meena, S. M., Mulla, M. M., Shetti, N. S., & Karanandi, M., Data Traffic Classification in Software Defined Networks (SDN) using supervised-learning. Procedia Computer Science, 171(2019), 2750–2759, 2020. [CrossRef] [Google Scholar]
- Shu, J., Zhou, L., Zhang, W., Du, X., & Guizani, M., Collaborative Intrusion Detection for VANETs: A Deep Learning-Based Distributed SDN Approach. IEEE Transactions on Intelligent Transportation Systems, 1–12, 2020. [Google Scholar]
- Malik, A., De Frein, R., Al-Zeyadi, M., & Andreu-Perez, J., Intelligent SDN Traffic Classification Using Deep Leaming: Deep-SDN. 2020 2nd International Conference on Computer Communication and the Internet, ICCCI 2020, 184–189, 2020. [Google Scholar]
- Tang, T. A., Mhamdi, L., Mclernon, D., Zaidi, S. A. R., & Ghogho, M., Deep learning approach for Network Intrusion Detection in Software Defined Networking. Proceedings 2016 International Conference on Wireless Networks and Mobile Communications, WINCOM 2016: Green Communications and Networking, 258–263, 2016. [Google Scholar]
- Lazaris, A., & Prasanna, V. K., Deep Flow: A deep learning framework for software defined measurement. CAN 2017 Proceedings of the 2017 Cloud-Assisted Networking Workshop, Part of CoNext 2017, 43–48, 2017. [Google Scholar]
- Ivannikova, E., Zolotukhin, M., & Hamalainen, T., Probabilistic transition-based approach for detecting application-layer DDoS Attacks in encrypted software-defined networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10394 LNCS, 531–543, 2017. [Google Scholar]
- Nguyen, T. M. T., Hamidouche, L., Mathieu, F., Monnet, S., & Iskounen, S., SDN-based Wi-Fi Direct clustering for cloud access in campus networks. Annales Des Telecommunications/Annals of Telecommunications, 73(3-4), 239–249, 2018. [CrossRef] [Google Scholar]
- Bakhshi, T., & Ghita, B., OpenFlow-enabled user traffic profiling in campus software defined networks. International Conference on Wireless and Mobile Computing, Networking and Communications, 2016. [Google Scholar]
- Harikrishna, P., & Amuthan, A., SDN-based DDoS Attack Mitigation Scheme using Convolution Recursively Enhanced Self Organizing Maps. Sadhana Academy Proceedings in Engineering Sciences, 45(1), 2020. [Google Scholar]
- Jankowski, D., & Amanowicz, M., Intrusion detection in software defined networks with self-organized maps. Journal of Telecommunications and Information Technology, 2015(4), 3–9, 2015. [CrossRef] [Google Scholar]
- Wang, T., & Chen, H., SGuard: A lightweight SDN safe-guard architecture for DoS attacks. China Communications, 14(6), 113–125, 2017. [CrossRef] [Google Scholar]
- Phan, T. V., Bao, N. K., & Park, M., Distributed-SOM: A novel performance bottleneck handler for large-sized software-defined networks under flooding attacks. Journal of Network and Computer Applications, 91, 14–25, 2017. [CrossRef] [Google Scholar]
- Braga, R., Mota, E., & Passito, A., Lightweight DDoS flooding attack detection using NOX/OpenFlow. Proceedings Conference on Local Computer Networks, LCN, 408415, 2010. [Google Scholar]
- Huang, G., & Youn, H. Y. (2020). Proactive eviction of flow entry for SDN based on hidden Markov model. Frontiers of Computer Science, 14(4), 1–10, 2020. [CrossRef] [Google Scholar]
- Prasanth, L. L., & Uma, E., Hidden Markov Model Based Secure Cluster Management in Software Defined Networking. 5, 123–126, 2020. [Google Scholar]
- Yang, Y., & Sun, H., Research on Traffic Optimization Scheme of SDN Network Based on ME-HMM. Journal of Physics: Conference Series, 1624, 042052, 2020. [CrossRef] [Google Scholar]
- Fan, Z., Xiao, Y., Nayak, A., & Tan, C., An improved network security situation assessment approach in software defined networks. Peer-to-Peer Networking and Applications, 12(2), 295–309, 2019. [CrossRef] [Google Scholar]
- Shan-Shan, J., & Ya-Bin, X., The APT detection method in SDN. 2017 3rd IEEE International Conference on Computer and Communications, ICCC 36, 2018-January [Google Scholar]
- Das, D., Bapat, J., & Das, D., Unsupervised Leaming Based Capacity Augmentation in SDN Assisted Wireless Networks. SN Computer Science, 1(4), 2020. [Google Scholar]
- Mao, B., Fadlullah, Z. M., Tang, F., Kato, N., Akashi, 0., Inoue, T., & Mizutani, K., Routing or Computing? the Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Leaming. IEEE Transactions on Computers, 66(11), 1946–1960, 2017. [CrossRef] [MathSciNet] [Google Scholar]
- Zhang, C., Wang, X., Li, F., He, Q., & Huang, M., Deep learning-based network application classification for SDN. Transactions on Emerging Telecommunications Technologies, 29(5), 2018. [Google Scholar]
- Niyaz, Q., Sun, W., & Javaid, A. Y., A Deep Leaming Based DDoS Detection System in Software-Defined Networking (SDN). ICST Transactions on Security and Safety, 4(12), 2017. [Google Scholar]
- Liu, W. X., Zhang, J., Liang, Z. W., Peng, L. X., & Cai, J. (2017). Content Popularity Prediction and Caching for ICN: A Deep Leaming Approach with SDN. IEEE Access, 6(c), 5075–5089. https://doi.org/10.1109/ACCESS.2017.2781716 [Google Scholar]
- Ahmed, M. E., Kim, H., & Park, M., Mitigating DNS query-based DDoS attacks with machine learning on software-defined networking. Proceedings IEEE Military Communications Conference MILCOM, 2017-October, 11–16, 2017. [Google Scholar]
- Zolotukhin, M., Kumar, S., & Hamalainen, T., Reinforcement learning for attack mitigation in SDN-enabled networks. Proceedings of the 2020 IEEE 37, Conference on Network Softwarization: Bridging the Gap Between AI and Network Softwarization, NetSoft 2020, 282–286, 2020. [Google Scholar]
- Sendra, S., Rego, A., Lloret, J., Jimenez, J. M., & Romero, 0., Including artificial intelligence in a routing protocol using Software Defined Networks. 2017 IEEE International Conference on Communications Workshops, ICC Workshops 2017, Scpa, 670–674, 2017. [Google Scholar]
- Uzakgider, T., Cetinkaya, C., & Sayit, M., Leaming-based approach for layered adaptive video streaming over SDN. Computer Networks, 92, 357–368, 2015. [CrossRef] [Google Scholar]
- Stampa, G., Arias, M., Sanchez-Charles, D., Muntes-Mulero, V., & Cabellos, A., A deep reinforcement learning approach for software-defined networking routing optimization. ArXiv, 14–16, 2017. [Google Scholar]
- Ravi, N., & Shalinie, S. M., Leaming-Driven Detection and Mitigation of DDoS Attack in IoT via SDN-Cloud Architecture. IEEE Internet of Things Journal, 7(4), 3559–3570, 2020. [CrossRef] [Google Scholar]
- Chen, F., & Zheng, X., Machine-learning based routing pre-plan for SDN. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9426, 149–159, 2015. [Google Scholar]
- Loog, M., Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3), 462–475, 2016. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.