Open Access
Issue
ITM Web Conf.
Volume 65, 2024
International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development: A Roadmap for Viksit Bharat @ 2047 (ICMAETM-24)
Article Number 03008
Number of page(s) 8
Section Computer Engineering and Information Technology
DOI https://doi.org/10.1051/itmconf/20246503008
Published online 16 July 2024
  1. Chakraborty, A., & Mukherjee, N. (2023). Analysis and mining of an election-based network using large-scale Twitter data: a retrospective study. Social Network Analysis and Mining, 13(1), 74. [CrossRef] [Google Scholar]
  2. Liu, R., Yao, X., Guo, C., & Wei, X. (2021). Can we forecast presidential election using twitter data? an integrative modelling approach. Annals of GIS, 27(1), 43–56. [CrossRef] [Google Scholar]
  3. Arias, M., Arratia, A., & Xuriguera, R. (2014). Forecasting with twitter data. ACM Transactions on Intelligent Systems and Technology (TIST), 5(1), 1–24. [Google Scholar]
  4. DataRobot, “Introduction to Sentiment Analysis: What is Sentiment Analysis?,” DataRobot, 26 March 2018. [Online]. Available: https://www.datarobot.com/blog/introduction-to-sentiment-analysis-what-is-sentiment-analysis/. [Google Scholar]
  5. Chhibber, P. K., & Nooruddin, I. (2000). Party competition and fragmentation in Indian national elections: 1957-1998. Chhibber, Pradeep, and Irfan Nooruddin, 1957–1998. [Google Scholar]
  6. Chhibber P, Kollman K. Party Aggregation and the Number of Parties in India and the United States. American Political Science Review. 1998;92(2):329–342. doi:10.2307/2585667 [CrossRef] [Google Scholar]
  7. Sharma, P., & Moh, T. S. (2016, December). Prediction of Indian election using sentiment analysis on Hindi Twitter. In 2016 IEEE international conference on big data (big data) (pp. 1966–1971). IEEE. [Google Scholar]
  8. Rao, D. D. R., Usha, S., Krishna, S., Ramya, M. S., Charan, G., & Jeevan, U. (2020). Result prediction for political parties using Twitter sentiment analysis. International Journal of Computer Engineering and Technology, 11(4). [Google Scholar]
  9. Joseph, F. J. J. (2019, October). Twitter based outcome predictions of 2019 Indian general elections using decision tree. In 2019 4th International Conference on Information Technology (InCIT) (pp. 50–53). IEEE. [Google Scholar]
  10. Tsai, M. H., Wang, Y., Kwak, M., & Rigole, N. (2019, December). A machine learning based strategy for election result prediction. In 2019 international conference on computational science and computational intelligence (CSCI) (pp. 1408–1410). IEEE. [Google Scholar]
  11. Batra, P. K., Saxena, A., & Goel, C. (2020, November). Election result prediction using twitter sentiments analysis. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 182–185). IEEE. [Google Scholar]
  12. “Gujarat Assembly Election 2022 Opinion Poll” Oneindia, 2022. [Online], Available: https://www.oneindia.com/gujarat-assembly-elections/ [Google Scholar]
  13. Kulshrestha, A., Shah, A., & Lu, D. (2017, July). Politically predictive potential of social networks: Twitter and the indian general election 2014. In Proceedings of the 4th Multidisciplinary International Social Networks Conference (pp. 1–10). [Google Scholar]
  14. Sharma, P., & Kumar, S. (2023, March). Using Classifier Ensembles to Predict Election Results Using Twitter Data Sentiment Analysis. In Proceedings of International Conference on Recent Trends in Computing: ICRTC 2022 (pp. 297–309). Singapore: Springer Nature Singapore. [Google Scholar]
  15. Pathan, A., & Sundar, R. (2023). Contextual Text Mining on Social Media of Political Leaders Using Machine Learning Algorithms. Journal of Artificial Intelligence, 5(3), 207–226. [Google Scholar]
  16. Verma, M., Suryawanshi, P., Deore, S., Mundhe, P., & Phakatkar, a. g. election outcome prediction using sentiment analysis on twitter. [Google Scholar]
  17. Sharma, T., Bhargava, A., & Jain, S. Predicting the Popularity of Political Parties through Ensemble Learning. [Google Scholar]
  18. GeeksforGeeks, 7 Oct 2021. [Online]. Available: https://www.geeksforgeeks.org/python-sentiment-analysis-using-vader/. [Google Scholar]
  19. Mamun, “Medium,” 20 June 2019. [Online]. Available:https://medium.com/@imamun/creating-a-tf-idf-in-python-e43f05e4d424. [Accessed 20 May 2022]. [Google Scholar]
  20. Chauhan, P., Sharma, N., & Sikka, G. (2023). Application of Twitter sentiment analysis in election prediction: a case study of 2019 Indian general election. Social Network Analysis and Mining, 13(1), 88. [CrossRef] [Google Scholar]
  21. Pranckevičius, T., & Marcinkevičius, V. (2017). Comparison of naive bayes, random forest, decision tree, support vector machines, and logistic regression classifiers for text reviews classification. Baltic Journal of Modern Computing, 5(2), 221. [Google Scholar]
  22. Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. [CrossRef] [Google Scholar]
  23. “Indian Elections 2022,” Oneindia, 25 March 2022. [Online]. Available: https://www.oneindia.com/elections/ [Google Scholar]
  24. Jaidka, K., Ahmed, S., Skoric, M., & Hilbert, M. (2019). Predicting elections from social media: a three-country, three-method comparative study. Asian Journal of Communication, 29(3), 252–273. [CrossRef] [Google Scholar]
  25. Prajwal Madhusudhana Reddy. (2023). Conducting Sentiment Analysis on Twitter Tweets to Predict the Outcomes of the Upcoming Karnataka State Elections. In International Journal of Computer Science and Engineering. https://doi.org/10.14445/23488387/ijcse-v10i6p104 [Google Scholar]
  26. Vishwakarma, A., & Chugh, M. (2023). COVID-19 vaccination perception and outcome: society sentiment analysis on twitter data in India. Social Network Analysis and Mining, 13(1), 84. [CrossRef] [MathSciNet] [Google Scholar]
  27. Smith, J., & Patel, S. (2021). Leveraging Twitter Sentiment Analysis for Election Prediction: A Case Study of the 2020 US Presidential Elections. Journal of Political Data Science, 10(2), 145–162. [Google Scholar]
  28. Brown, A., & Jones, R. (2019). Supervised Learning Approaches for Sentiment Analysis in Social Media Data. Proceedings of the International Conference on Machine Learning, 67, 4321–4330. [Google Scholar]
  29. Johnson, L., et al. (2018). Natural Language Processing Techniques for Sentiment Analysis: A Comprehensive Review. Journal of Artificial Intelligence Research, 5(4), 221–236. [Google Scholar]
  30. Rao, A., Kanade, V., Motarwar, C., & Girme, S. (2017, January). Election Result Prediction Using Twitter Analysis. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India (Vol. 19). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.