Open Access
Issue |
ITM Web Conf.
Volume 65, 2024
International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development: A Roadmap for Viksit Bharat @ 2047 (ICMAETM-24)
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 5 | |
Section | Electricals and Electronics Engineering | |
DOI | https://doi.org/10.1051/itmconf/20246504006 | |
Published online | 16 July 2024 |
- O’Regan, B., Graetzel, M. and Fitzmaurice, D., 1991. Optical electrochemistry. 2. Real-time spectroscopy of conduction band electrons in a metal oxide semiconductor electrode. The Journal of physical chemistry, 95(26), pp.10525–10528. [CrossRef] [Google Scholar]
- Zhang, Q., Park, K., Xi, J., Myers, D. and Cao, G., 2011. Recent Progress in Dye‐Sensitized Solar Cells Using Nanocrystallite Aggregates. Advanced Energy Materials, 1(6), pp.988–1001. [CrossRef] [Google Scholar]
- Bjoerksten, U., Moser, J. and Graetzel, M., 1994. Photoelectrochemical studies on nanocrystalline hematite films. Chemistry of materials, 6(6), pp.858–863. [CrossRef] [Google Scholar]
- Dow, W.P. and Huang, T.J., 1996. Yttria-stabilized zirconia supported copper oxide catalyst: II. Effect of oxygen vacancy of support on catalytic activity for CO oxidation. Journal of Catalysis, 160(2), pp.171–182. [CrossRef] [Google Scholar]
- Larsson, P.O., Andersson, A., Wallenberg, L.R. and Svensson, B., 1996. Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide. Journal of Catalysis, 163(2), pp.279–293. [CrossRef] [Google Scholar]
- Jiang, Y., Decker, S., Mohs, C. and Klabunde, K.J., 1998. Catalytic solid state reactions on the surface of nanoscale metal oxide particles. Journal of Catalysis, 180(1), pp.24–35. [CrossRef] [Google Scholar]
- Mitsuyu, T., Yamazaki, O., Ohji, K. and Wasa, K., 1982. Piezoelectric thin films of zinc oxide for saw devices. Ferroelectrics, 42(1), pp.233–240. [CrossRef] [Google Scholar]
- Wohlfarth, E.P. ed., 1986. Handbook of magnetic materials (Vol. 2). Elsevier. [Google Scholar]
- Lee, S., Choi, S.S., Li, S.A. and Eastman, J.A., 1999. Measuring thermal conductivity of fluids containing oxide nanoparticles. [Google Scholar]
- Rakhshani, A.E., 1986. Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. SolidState Electronics, 29(1), pp.7–17. [CrossRef] [Google Scholar]
- Jagtap, S.V., Tale, A.S. and Thakre, S.D., 2017. Synthesis by sol gel method and characterization of Co3O4 nanoparticles. Int. J. Res. Eng. Appl. Sci, 7, pp.1–6. [Google Scholar]
- Salavati-Niasari, M., Khansari, A. and Davar, F., 2009. Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. InorganicaChimica Acta, 362(14), pp.4937–4942. [Google Scholar]
- Rahimi-Nasrabadi, M., Naderi, H.R., Karimi, M.S., Ahmadi, F. and Pourmortazavi, S.M., 2017. Cobalt carbonate and cobalt oxide nanoparticles synthesis, characterization and supercapacitive evaluation. Journal of Materials Science: Materials in Electronics, 28(2), pp.1877–1888. [CrossRef] [Google Scholar]
- Wadekar, K.F., Nemade, K.R. and Waghuley, S.A., 2017. Chemical synthesis of cobalt oxide (Co3O4) nanoparticles using Co-precipitation method. Res J Chem Sci, 7(1), pp.53–55. [Google Scholar]
- Li, W.Y., Xu, L.N. and Chen, J., 2005. Co3O4 nanomaterials in lithium‐ion batteries and gas sensors. Advanced Functional Materials, 15(5), pp.851–857. [CrossRef] [Google Scholar]
- Xie, X. and Shen, W., 2009. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale, 1(1), pp.50–60. [CrossRef] [Google Scholar]
- Kumar, N., Yu, Y.C., Lu, Y.H. and Tseng, T.Y., 2016. Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. Journal of materials science, 51(5), pp.2320–2329. [CrossRef] [Google Scholar]
- Durukan, M.B., Yuksel, R. and Unalan, H.E., 2016. Cobalt oxide nanoflakes on single walled carbon nanotube thin films for supercapacitor electrodes. Electrochimica Acta, 222, pp.1475–1482. [CrossRef] [Google Scholar]
- Cornell, R.M. and Schwertmann, U., 2003. The iron oxides: structure, properties, reactions, occurrences, and uses (Vol. 664). Weinheim: Wiley-vch. [CrossRef] [Google Scholar]
- Cullity, B.D., 1972. Introduction to magnetic materials, Addison-Wesley Publishing Co. Inc. Reading MA. [Google Scholar]
- Häfeli, U., Schütt, W., Teller, J. and Zborowski, M. eds., 2013. Scientific and clinical applications of magnetic carriers. Springer Science & Business Media. [Google Scholar]
- Jiang, J.Z., Lin, R., Lin, W., Nielsen, K., Mørup, S., Dam-Johansen, K. and Clasen, R., 1997. Gas-sensitive properties and structure of nanostructured (-materials prepared by mechanical alloying. Journal of Physics D: Applied Physics, 30(10), p.1459. [CrossRef] [Google Scholar]
- Benz, M., Van der Kraan, A.M. and Prins, R., 1998. Reduction of aromatic nitrocompounds with hydrazine hydrate in the presence of an iron oxide hydroxide catalyst: II. Activity, X-ray diffraction and Mössbauer study of the iron oxide hydroxide catalyst. Applied Catalysis A: General, 172(1), pp.149–157. [CrossRef] [Google Scholar]
- Brida, D., Fortunato, E., Águas, H., Silva, V., Marques, A., Pereira, L., Ferreira, I. and Martins, R., 2002. New insights on large area flexible position sensitive detectors. Journal of non-crystalline solids, 299, pp.1272–1276. [CrossRef] [Google Scholar]
- Wang, Z.L., 2004. Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter, 16(25), p.R829. [CrossRef] [Google Scholar]
- Suchea, M., Christoulakis, S., Moschovis, K., Katsarakis, N. and Kiriakidis, G., 2006. ZnO transparent thin films for gas sensor applications. Thin solid films, 515(2), pp.551–554. [CrossRef] [Google Scholar]
- Ashour, A., Kaid, M.A., El-Sayed, N.Z. and Ibrahim, A.A., 2006. Physical properties of ZnO thin films deposited by spray pyrolysis technique. Applied Surface Science, 252(22), pp.7844–7848. [CrossRef] [Google Scholar]
- Chen, J.C. and Tang, C.T., 2007. Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene. Journal of hazardous materials, 142(1-2), pp.88–96. [CrossRef] [Google Scholar]
- Ashok, C.H., Rao, K.V. and Chakra, C.S., 2014. Structural analysis of CuO nanomaterials prepared by novel microwave assisted method. Journal of Atoms and Molecules, 4(5), pp.803–806. [Google Scholar]
- Sharifi, S.L., Shakur, H.R., Mirzaei, A. and Hosseini, M.H., 2013. Characterization of cobalt oxide Co3O4 nanoparticles prepared by various methods: effect of calcination temperatures on size, dimension and catalytic decomposition of hydrogen peroxide. International Journal of Nanoscience and Nanotechnology, 9(1), pp.51–58. [Google Scholar]
- Ma, M., Zhang, Y., Yu, W., Shen, H.Y., Zhang, H.Q. and Gu, N., 2003. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids and Surfaces A: physicochemical and engineering aspects, 212(2-3), pp.219–226. [CrossRef] [Google Scholar]
- Kumar, M., Kumar, S., Parveen, Z., Kaur, J., Sharma, N. and Bansod, B.S., 2015. Facial synthesis of nano Sized ZnO by hydrothermal method. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(5), pp.4440–4444. [Google Scholar]
- Kumar, N., Sahoo, P.K. and Panda, H.S., 2017. Tuning the electro-chemical properties by selectively substituting transition metals on carbon in Ni/Co oxide–carbon composite electrodes for supercapacitor devices. New Journal of Chemistry, 41(9), pp.3562–3573. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.