Open Access
Issue
ITM Web Conf.
Volume 67, 2024
The 19th IMT-GT International Conference on Mathematics, Statistics and Their Applications (ICMSA 2024)
Article Number 01031
Number of page(s) 13
Section Mathematics, Statistics and Their Applications
DOI https://doi.org/10.1051/itmconf/20246701031
Published online 21 August 2024
  1. D.D. Lee, H.S. Seung, Nature 401, 788 (1999), https://doi.org/10.1038/44565 [NASA ADS] [CrossRef] [Google Scholar]
  2. P.C. Barman, N. Iqbal, S.Y. Lee, Non-negative Matrix Factorization Based Text Mining: Feature Extraction and Classification, in Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, edited by I. King, J. Wang, L. Chan, D. Wang (Springer, Berlin, Heidelberg, 2006), Vol. 4233, https://doi.org/10.1007/11893257_78 [Google Scholar]
  3. W. Xu, X. Liu, Y. Gong, Document Clustering Based on Non-Negative Matrix Factorization, in Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval (Association for Computing Machinery, New York, NY, USA, 2003), SIGIR ‘03, p. 267–273, ISBN 1581136463, https://doi.org/10.1145/860435.860485 [Google Scholar]
  4. W. Liu, N. Zheng, Q. You, CHINESE SCI BULL 51, 7 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  5. S.W. Fu, P.C. Li, Y.H. Lai, C.C. Yang, L.C. Hsieh, Y. Tsao, IEEE Transactions on Biomedical Engineering (2016) [Google Scholar]
  6. S. Lee, H.S. Pang, IEEE Access 8, 122384 (2020) [CrossRef] [Google Scholar]
  7. W. Wang, S. Wang, D. Qin, Y. Fang, Y. Zheng, Biomedical Signal Processing and Control 79, 104180 (2023) [CrossRef] [Google Scholar]
  8. Y. Xie, K. Xie, Q. Yang, S. Xie, Biomédical Signal Processing and Control 69, 102899 (2021) [CrossRef] [Google Scholar]
  9. G. Yu, K. Wang, G. Fu, M. Guo, J. Wang, IEEE/ACM transactions on computational biology and bioinformatics 17, 238 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Phon-Amnuaisuk, Procedía Computer Science 24, 261 (2013), 17th Asia Pacific Symposium on Intelligent and Evolutionary Systems, IES2013 [CrossRef] [Google Scholar]
  11. L. Hogben, ed., Handbook of Linear Algebra (CRC Press, 2014) [Google Scholar]
  12. N.K. Kumar, J. Shneider, ArXiv abs/1606.06511 (2016) [Google Scholar]
  13. D. Joyner, Adventures in Group Theory. Rubik’s cube, Merlin’s machine, and other mathematical toys (Johns Hopkins University Press, Baltimore, MD, 2008) [Google Scholar]
  14. M. Jeter, W. Pye, Linear Algebra and its Applications 38, 171 (1981) [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Févotte, J. Idier, Neural Computation 23, 2421 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Li, G. Lebanon, H. Park, Fast Bregman Divergence NMF Using Taylor Expansion and Coordinate Descent, in Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery, New York, NY, USA, 2012), KDD ‘12, p. 307–315, ISBN 9781450314626, https://doi.org/10.1145/2339530.2339582 [Google Scholar]
  17. A. Cichocki, H. Lee, Y.D. Kim, S. Choi, Pattern Recognition Letters 29, 1433 (2008) [CrossRef] [Google Scholar]
  18. K. Machida, T. Takenouchi, Non-negative Matrix Factorization based on y- divergence, in 2015 International Joint Conference on Neural Networks (IJCNN) (2015), pp. 1–6 [Google Scholar]
  19. S. Eguchi, Y. Kano, Tech, rep., Tokyo Institute of Statistical Mathematics, Tokyo, Japan (2001) [Google Scholar]
  20. A. Cichocki, R. Zdunek, A.H. Phan, S.L. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation (John Wiley & Sons, Ltd, 2009) [Google Scholar]
  21. Y.X. Wang, Y. J. Zhang, IEEE Transactions on Knowledge and Data Engineering 25, 1336 (2013) [CrossRef] [Google Scholar]
  22. J. Kim, Y. He, H. Park, Journal of Global Optimization 58, 285 (2014) [CrossRef] [MathSciNet] [Google Scholar]
  23. N. Gillis, Nonnegative Matrix Factorization (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2020), https://epubs.siam.org/doi/pdf/10.1137/1.9781611976410, https://epubs.Siam.org/doi/abs/10.1137/1.9781611976410 [CrossRef] [Google Scholar]
  24. S. Lee, Applied Sciences 10 (2020) [Google Scholar]
  25. M.N.M. Ndaw, P. Ngom, Relationship between the bregman divergence and betadivergence and their applications (2018), 1805.07086 [Google Scholar]
  26. C. Févotte, J. Idier, Neural Computation 23 (2011) [Google Scholar]
  27. A. Cichocki, R. Zdunek, S. Choi, R. Flemmone, S.I. Amari, Non-Negaťive Tensor Factorization using Alpha and Beta Divergences, in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP ‘07 (2007), Vol. 3, pp. III-1393–III-1396 [CrossRef] [Google Scholar]
  28. M.C.K. Tweedie, An index which distinguishes between some important exponential families, in Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference (Calcutta: Indian Statistical Institute, 1984), pp. 579–604 [Google Scholar]
  29. D.D. Lee, H.S. Seung, Algorithms for Non-negative Matrix Factorization, in Advances in NIPS (2001) [Google Scholar]
  30. C.J. Lin, IEEE Trans. Neural Network 18, pp. 1589 (2007) [CrossRef] [Google Scholar]
  31. N. Gillis, F. Glineur, Neural Computation 24, 1085 (2012) [CrossRef] [MathSciNet] [Google Scholar]
  32. C.J. Lin, Neural Computation 19, 2756 (2007) [CrossRef] [Google Scholar]
  33. J. Kim, H. Park, SIAM J. Sci. Comput. 33, 3261 (2011) [CrossRef] [MathSciNet] [Google Scholar]
  34. A. Cichocki, A.H. Phan, lEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 92, 708 (2009) [Google Scholar]
  35. C.J. Hsieh, I.S. Dhillon, Fast Coordinate Descent Methods with variable selection for Non-Negative Matrix Factorization, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011), pp. 1064–1072 [CrossRef] [Google Scholar]
  36. D.L. Sun, C. Févotte, Alternating direction method of multipliers for non-negative matrix factorization with the beta-divergence, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp. 6201–6205 [Google Scholar]
  37. D. Hajinezhad, Т.Н. Chang, X. Wang, Q. Shi, M. Hong, Nonnegative matrix factorization using ADMM: Algorithm and convergence analysis, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 4742–4746 [CrossRef] [Google Scholar]
  38. F. Yanez, F. Bach, Primal-dual algorithms for non-negative matrix factorization with the Kullback-Leibler divergence, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2017), pp. 2257–2261 [Google Scholar]
  39. R. Peharz, F. Pernkopf, Neurocomputing 80, 38 (2012), special Issue on Machine Learning for Signal Processing 2010 [CrossRef] [Google Scholar]
  40. Z. Zhang, T. Li, C. Ding, X. Zhang, Binary Matrix Factorization with Applications, in Seventh IEEE International Conference on Data Mining (ICDM 2007) (2007), pp. 391–400 [CrossRef] [Google Scholar]
  41. S. Wang, Т.Н. Chang, Y. Cui, J.S. Pang, Clustering by orthogonal nmf model and non-convex penalty optimization (2021), 1906.00570 [Google Scholar]
  42. Y.D. Kim, S. Choi, Weighted nonnegative matrix factorization, in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (2009), pp. 1541–1544 [CrossRef] [Google Scholar]
  43. A. Degleris, B. Antin, S. Ganguli, A.H. Williams, Fast convolutive nonnegative matrix factorization through coordinate and block coordinate updates (2019), 1907.00139 [Google Scholar]
  44. D. Zhang, Z.H. Zhou, S. Chen, Non-negative Matrix Factorization on Kernels, in PRICAI 2006: Trends in Artificial Intelligence, edited by Q. Yang, G. Webb (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 404–412, ISBN 9783-540-36668-3 [Google Scholar]
  45. A.G.K. Janecek, S.S. Grotthoff, W.N. Gansterer, Computing and Informatics 30, 205 (2011) [Google Scholar]
  46. H. Kasai, NMFLibrary: Matlab library for non-negative matrix factorization (nmf), https://github.com/hiroyuki-kasai/NMFLibrary (2017) [Google Scholar]
  47. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Journal of Machine Learning Research 12, 2825 (2011) [Google Scholar]
  48. M. Zitnik, B. Zupan, Journal of Machine Learning Research 13, 849 (2012) [Google Scholar]
  49. J.E. Cohen, N. Gillis, A new approach to dictionary-based nonnegative matrix factorization, in 2017 25th European Signal Processing Conference (EUSIPCO) (2017), pp. 493–497 [CrossRef] [Google Scholar]
  50. C. Boutsidis, E. Gallopoulos, Pattern Recognition 41, 1350 (2008) [CrossRef] [Google Scholar]
  51. L. Deng, IEEE Signal Processing Magazine 29, 141 (2012) [CrossRef] [Google Scholar]
  52. A. Baldominos, Y. Saez, P. Isasi, Applied Sciences 9 (2019) [Google Scholar]
  53. C. Ding, X. He, H.D. Simon, On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering, in Proceedings of the 2005 SIAM International Conference on Data Mining (SDM) (2005), pp. 606–610 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.