Open Access
Issue
ITM Web Conf.
Volume 67, 2024
The 19th IMT-GT International Conference on Mathematics, Statistics and Their Applications (ICMSA 2024)
Article Number 01039
Number of page(s) 13
Section Mathematics, Statistics and Their Applications
DOI https://doi.org/10.1051/itmconf/20246701039
Published online 21 August 2024
  1. Armijo, Larry, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math. 16 (1): 1–3 (1966). [CrossRef] [Google Scholar]
  2. Barzilai, J., Borwein, J., Two-Point Step Size Gradient Methods, IMA Journal of Numerical Analysis 8, 141–148 (1988). [CrossRef] [MathSciNet] [Google Scholar]
  3. Caron, J. N., Namazi, N. M., Rollins, C. J. Noniterative blind data restoration by use of an extracted filter function. Applied Optics 41 (32), 6884 (2002). [CrossRef] [Google Scholar]
  4. Cauchy, A., Méthode générale pour la résolution des systemes d’équations simultanées [General method for solving systems of simultaneous equations], Comp. Rend. Sci. Paris 25, 536–538 (1847). [Google Scholar]
  5. Conn, A. R., Gould, N. I. M., Toint, O. L., Convergence of quasi-Newton matrices generated by the symmetric rank one update. Mathematical Programming, 50 (1-3), 177–195. (1991). [CrossRef] [MathSciNet] [Google Scholar]
  6. Dai, Y.H., Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization 10 (1): 177–182 (1999). [CrossRef] [MathSciNet] [Google Scholar]
  7. Davidon, W.C., Variable metric method for minimization, United States: N. p., (1959). [Google Scholar]
  8. Edwin K.P. Chong, Stanislaw H. Zak, An Introduction to Optimization. 4th Edition, (A John Wiley & Sons, Inc., New Jersey, 2013) 81–93. [Google Scholar]
  9. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T., Removing Camera Shake from a Single Photograph. ACM Transactions on Graphics 25 (3), 787 (2006). [CrossRef] [Google Scholar]
  10. Fletcher, R., Reeves, C. M., Function minimization by conjugate gradients, The Computer Journal 7 (2): 149–154 (1964). [CrossRef] [MathSciNet] [Google Scholar]
  11. Fletcher, R., Powell, M.J.D., A rapidly convergent descent method for minimization, The Computer Journal, 6 (2), 163–168. (1963). [Google Scholar]
  12. Hager, W. W., Zhang, H. A survey of nonlinear conjugate gradient methods. Pacific journal of Optimization 2 (1), 35–58 (2006). [Google Scholar]
  13. Hestenes, M. R., Stiefel, E. Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bereau of Standards 49 (6), 409–436 (1952). [CrossRef] [Google Scholar]
  14. Jorge Nocedal, Stephen J. Wright, Numerical Optimiation, (2nd ed) (Springer, New York, 2006), 5–9. [Google Scholar]
  15. Liu, Y., Storey, C., Efficient generalized conjugate gradient algorithms, part 1: theory, J. Optim. Theory Appl. 69 (1), pp. 129–137 (1991). [CrossRef] [MathSciNet] [Google Scholar]
  16. Luenberger, D.G., Linear and Nonlinear Programming, 2nd Edn., Addition-Wesley, Reading (1984). [Google Scholar]
  17. Poisel, R.A., Electronic Warfare Target Location Methods, Second Edition, Artech House (2012). [Google Scholar]
  18. Polak, E., Ribière, G., Note sur la convergence de méthodes de directions conjuguées, Revue Française d’Automatique, Informatique, Recherche Opérationnelle 3 (1), 35–43 (1969). [Google Scholar]
  19. Polyak, B., Gradient methods for minimizing functionals (in russian), Zh. Vychisl. Mat. Mat. Fiz., pp. 643–653 (1963). [Google Scholar]
  20. Rao, S.S., Engineering Optimization: Theory and Practice, John Wiley & Sons, Inc. (2009). [CrossRef] [Google Scholar]
  21. Raydan, M., and Svaiter, B. F., Relaxed steepest descent and Cauchy-Barzilai-Borwein method., Computational Optimization and Application 21 (2), 155–167 (2002). [CrossRef] [Google Scholar]
  22. Sim, H.S., Spectral Gradient Methods via variational technique for large scale unconstrained optimization, Doctoral dissertation, Universiti Putra Malaysia (2017). [Google Scholar]
  23. Sim, H.S., Leong, W.J., Chen, C.Y., Gradient Method with Multiple Damping for Large Scale Unconstrained Optimization, Optimization Letters 13, 617–632 (2019). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.