Open Access
Issue
ITM Web Conf.
Volume 67, 2024
The 19th IMT-GT International Conference on Mathematics, Statistics and Their Applications (ICMSA 2024)
Article Number 01048
Number of page(s) 10
Section Mathematics, Statistics and Their Applications
DOI https://doi.org/10.1051/itmconf/20246701048
Published online 21 August 2024
  1. S. Abdulateef and M. Salman, A Comprehensive Review of Image Segmentation Techniques, Iraqi J. Electr. Electron. Eng., 17, 166–175, (2021) [CrossRef] [Google Scholar]
  2. H. Mittal, A. C. Pandey, M. Saraswat, S. Kumar, R. Pal, and G. Modwel, A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets, Multimed. Tools Appl., 81, 35001–35026, (2021) [Google Scholar]
  3. T. Pavlidis and Y. T. Liow, Integrating Region Growing and Edge Detection, IEEE Trans. Pattern Anal. Mach. Intell., 12, 225–233, (1990) [CrossRef] [Google Scholar]
  4. J. Fan, D. K. Y. Yau, A. K. Elmagarmid, and W. G. Aref, Automatic image segmentation by integrating color-edge extraction and seeded region growing, IEEE Trans. Image Process., 10, 1454–1466, (2001) [CrossRef] [Google Scholar]
  5. J. Freixenet, X. Muñoz, D. Raba, J. Martí, and X. Cufí, Yet another survey on image segmentation: Region and boundary information integration, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2352, 408–422, (2002) [Google Scholar]
  6. A. Rezai, and F. Asadi, Systematic review of image segmentation using complex networks, arXiv preprint arXiv:2401.02578, (2024) [Google Scholar]
  7. S. Thiruchittampalam, B. P. Banerjee, N. F. Glenn, and S. Raval, Comparative Evaluation of Traditional and Deep Learning-Based Segmentation Methods for Spoil Pile Delineation Using UAVImages, arXiv preprint arXiv:2402.00295, (2024) [Google Scholar]
  8. I. Kotaridis and M. Lazaridou, Remote sensing image segmentation advances: A meta-analysis, ISPRS J. Photogramm. Remote Sens., 173, 309–322, (2021) [CrossRef] [Google Scholar]
  9. N. Agrawal and S. Aurelia, A Review on Segmentation of Vitiligo image, IOP Conf. Ser. Mater. Sci. Eng., 1131, 012003, (2021) [CrossRef] [Google Scholar]
  10. S. Kaur and R. Bansal, Comparative Analysis of Superpixel Segmentation Methods, Int. J. Eng. Technol. Manag. Res., 5, 1–9, (2020) [CrossRef] [Google Scholar]
  11. P. F. Felzenszwalb and D. P. Huttenlocher, Efficient graph-based image segmentation, Int. J. Comput. Vis., 59, 167–181, (2004) [CrossRef] [Google Scholar]
  12. A. Vedaldi and S. Soatto, Quick shift and kernel methods for mode seeking, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) LNCS 5305, 705–718, (2008) [Google Scholar]
  13. F. P. Neubert and P. Protzel, Compact watershed and preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms, Proc. -Int. Conf. Pattern Recognit., 996–1001, (2014) [Google Scholar]
  14. R. Achanta, A. Shaji, K. Smith, and A. Lucchi, Simple linear iterative clustering (SLIC) Superpixels Compared to State-of-the-Art Superpixel Method, IEEE Trans. Pattern Anal. Mach. Intell., 34, 2274–2281, (2012) [CrossRef] [Google Scholar]
  15. A. S. Sahadevan, Extraction of spatial-spectral homogeneous patches and fractional abundances for field-scale agriculture monitoring using airborne hyperspectral images, Comput. Electron. Agric., 188, (2021) [Google Scholar]
  16. N. Liao, B. Guo, C. Li, H. Liu, and C. Zhang, BACA: Superpixel Segmentation with Boundary Awareness and Content Adaptation, Remote Sens., 14(18), (2022) [Google Scholar]
  17. S. E. Corchs, G. Ciocca, E. Bricolo, and F. Gasparini, Predicting complexity perception of real world images, PLoS One, 11, 1–22, (2016) [Google Scholar]
  18. F. Li, R. Feng, W. Han, and L. Wang, High-Resolution Remote Sensing Image Scene Classification via Key Filter Bank Based on Convolutional Neural Network, IEEE Trans. Geosci. Remote Sens., 58, 8077–8092, (2020) [CrossRef] [Google Scholar]
  19. S. Saha, K. H. Uddin, M. S. Islam, M. Jahiruzzaman, and A.B.M.A. Hossain, Implementation of simplified normalized cut graph partitioning algorithm on FPGA for image segmentation, Ski. 2014-8th Int. Conf. Software, Knowledge, Inf. Manag. Appl., (2014) [Google Scholar]
  20. S. Patel and B. Kadhiwala, Comparative Analysis of Cluster based Superpixel Segmentation Techniques, Proc. 2nd Int. Conf. Trends Electron. Informatics (ICOEI 2018) IEEE Conf. Rec., 57–72, (2018) [Google Scholar]
  21. R. R.-Z. and J. F. Reinoso-Gordo, An Updated Review on Watershed, Springer Int. Publ. AG, 235–258, (2018) [Google Scholar]
  22. F. Meyer, Color image segmentation, Int. Conf. image Process. its Appl., pp. 303–306, (1992) [Google Scholar]
  23. S. S. Achanta, Shaji A., Smith K., Lucchi A., Fua P., SLIC superpixels, REP Work, (2010) [Google Scholar]
  24. D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proc. IEEE Int. Conf. Comput. Vis., 2, 416–423, (2001) [Google Scholar]
  25. S. Ji, S. Wei, and M. Lu, Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set, IEEE Trans. Geosci. Remote Sens., 57, 574–586, (2019) [CrossRef] [MathSciNet] [Google Scholar]
  26. S. van der Walt, J. L. Schonberger, J. N. Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, Scikit-Image: Image Processing in Python, PeerJ, 2, (2014) [Google Scholar]
  27. N. Kanopoulos, N. Vasanthavada, and R. L. Baker, Design of an Image Edge Detection Filter Using the Sobel Operator, IEEE J. Solid- State Circuits, 23, 358–367, (1988) [CrossRef] [Google Scholar]
  28. T. Liu, C. Jones, M. S. Hosseini, and T. Tasdizen, A modular hierarchical approach to 3D electron microscopy image segmentation, J. Neurosci. Methods, 226, 88–102, (2014) [CrossRef] [Google Scholar]
  29. W. Huang, Semi-Supervised Neuron Segmentation via Reinforced Consistency Learning, IEEE Trans. Med. Imaging, 41, 3016–3028, (2022) [CrossRef] [Google Scholar]
  30. R. H. van Leuken, L. Garcia, X. Olivares, and R. van Zwol, Visual diversification of image search results, Proc. 18th Int. World Wide Web Conf., 341–350, (2009) [CrossRef] [Google Scholar]
  31. Z. Luo, W. Yang, Y. Yuan, R. Gou, and X. Li, Semantic segmentation of agricultural images: a survey. Information Processing in Agriculture. (2023) [Google Scholar]
  32. U. Nazir, W. Islam, and M. Taj, Spatio-Temporal driven Attention Graph Neural Network with Block Adjacency matrix (STAG-NN-BA). arXiv preprint arXiv:2303.14322, (2023) [Google Scholar]
  33. M. Vadiveloo, R. Abdullah, and M. Rajeswari, A graph-based watershed merging using fuzzy C-means and simulated annealing for image segmentation. Seventh International Conference on Graphic and Image Processing (ICGIP), Proceedings 9817, 113–121, (2015) [Google Scholar]
  34. D. Stutz, A. Hermans, and B. Leibe, Superpixels: An evaluation of the state-of-the-art, Comput. Vis. Image Underst., 166, 1–27, (2018) [CrossRef] [Google Scholar]
  35. T. Suzuki, Superpixel Segmentation Via Convolutional Neural Networks with Regularized Information Maximization, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., 2573–2577, (2020) [Google Scholar]
  36. D. N. Gonçalves, Carcass Image segmentation using CNN- based methods, Inf. Process. Agric., 8, 560–572, (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.