Open Access
Issue
ITM Web Conf.
Volume 68, 2024
2024 First International Conference on Artificial Intelligence: An Emerging Technology in Management (ICAETM 2024)
Article Number 01003
Number of page(s) 11
Section Engineering Technology & Management
DOI https://doi.org/10.1051/itmconf/20246801003
Published online 12 December 2024
  1. K. K. Ramachandran, A. A. S. Mary, S. Hawladar, D. Asokk, B. Bhaskar, & J. R. Pitroda. Machine learning and role of artificial intelligence in optimizing work performance and employee behavior. Mater. Today: Proc., 51, 2327–2331. (2022). [CrossRef] [Google Scholar]
  2. F. Gulliford & A. P. Dixon. AI: the HR revolution. Strategic HR Rev., 18(2), 52–55. (2019). [CrossRef] [Google Scholar]
  3. M. Arora, A. Prakash, A. Mittal, & S. Singh. HR analytics and artificial intelligencetransforming human resource management. In 2021 International Conference on Decision Aid Sciences and Application (DASA) (pp. 288–293). IEEE. (2021). [Google Scholar]
  4. C. H. Yang. How artificial intelligence technology affects productivity and employment: firm-level evidence from Taiwan. Res. Policy, 51(6), 104536. (2022). [CrossRef] [Google Scholar]
  5. Malik, P. Budhwar, H. Mohan, & S. NR. Employee experience–the missing link for engaging employees: Insights from an MNE’s AI‐based HR ecosystem. Hum. Resour. Manag., 62(1), 97–115. (2023). [CrossRef] [Google Scholar]
  6. M. Javaid, A. Haleem, & R. P. Singh. A study on ChatGPT for Industry 4.0: Background, potentials, challenges, and eventualities. J. Economy Technol., 1, 127–143. (2023). [CrossRef] [Google Scholar]
  7. P. Cappelli, P. Tambe, & V. Yakubovich. Artificial intelligence in human resources management: Challenges and a path forward. Acad. Manag. Perspect., 33(2), 153–170. (2019). https://doi.org/10.5465/amp.2017.0083 [Google Scholar]
  8. B. Cowgill, F. Dell’Acqua, S. Deng, & S. Deng. Biased programmers? Or biased data? A field experiment in operationalizing AI ethics. Proc. 2020 AAAI/ACM Conf. AI, Ethics, and Society. (2020). https://doi.org/10.1145/3375627.3375834 [Google Scholar]
  9. T. Chamorro-Premuzic, R. Akhtar, D. Winsborough, & R. Sherman. The talent delusion: Why data, not intuition, is key to unlocking human potential. Harvard Business Review Press. (2018). [Google Scholar]
  10. J. Bersin. The rise of AI in HR: How artificial intelligence is transforming work. Deloitte Insights. (2020). [Google Scholar]
  11. H. J. Wilson & P. R. Daugherty. Human + machine: Reimagining work in the age of AI. Harvard Business Review Press. (2018). [Google Scholar]
  12. S. Tong, N. Jia, X. Luo, & Z. Fang. The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance. Strateg. Manag. J., 42(9), 1600–1631. (2021). [CrossRef] [Google Scholar]
  13. J. H. Marler & J. W. Boudreau. An evidencebased review of HR analytics. Int. J. Hum. Resour. Manag., 28(1), 3–26. (2017). https://doi.org/10.1080/09585192.2016.1244699 [CrossRef] [Google Scholar]
  14. N. Guenole & S. Feinzig. The power of people: How AI is shaping the future of employee engagement and retention. IBM Institute for Business Value. (2020). [Google Scholar]
  15. J. R. Burnett & T. C. Lisk. The future of employee engagement: Real-time monitoring and digital tools for engaging a workforce. In Int. Perspect. on Employee Engagement (pp. 117–128). Routledge. (2019). [Google Scholar]
  16. Malik, P. Budhwar, & B. A. Kazmi. Artificial intelligence (AI)-assisted HRM: Towards an extended strategic framework. Hum. Resour. Manag. Rev., 33(1), 100940. (2023). [Google Scholar]
  17. P. Tambe, P. Cappelli, & V. Yakubovich. Artificial intelligence in human resources management: Challenges and a path forward. Acad. Manag. Perspect., 33(2), 153–170. (2019). https://doi.org/10.5465/amp.2017.0083 [Google Scholar]
  18. C. B. Frey & M. A. Osborne. The future of employment: How susceptible are jobs to computerization? Oxford University Press. (2017). [Google Scholar]
  19. E. Brynjolfsson & A. McAfee. The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company. (2014). [Google Scholar]
  20. S. Barocas & M. A. Hardt. Fairness in machine learning. Proc. 2019 Conf. on Fairness, Accountability, and Transparency. (2019). https://doi.org/10.1145/3287560.3287583 [Google Scholar]
  21. S. Bankins. The ethical use of artificial intelligence in human resource management: A decision-making framework. Ethics Inf. Technol., 23(4), 841–854. (2021). [CrossRef] [Google Scholar]
  22. J. Bessen. AI and jobs: The role of demand. MIT Press. (2019). [Google Scholar]
  23. K. Kellogg, M. A. Valentine, & A. Christin. Algorithms at work: The new contested terrain of control. Acad. Manag. Ann., 14(1), 366–410. (2020). https://doi.org/10.5465/annals.2018.0174 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.