Open Access
Issue |
ITM Web Conf.
Volume 68, 2024
2024 First International Conference on Artificial Intelligence: An Emerging Technology in Management (ICAETM 2024)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 6 | |
Section | Engineering Technology & Management | |
DOI | https://doi.org/10.1051/itmconf/20246801009 | |
Published online | 12 December 2024 |
- Kundu, R., Das, R., Geem, Z. W., Han, G. T., & Sarkar, R. (2021). Pneumonia detection in chest Xray images using an ensemble of deep learning models. PloS one, 16(9), e0256630. https://doi.org/10.1371/journal.pone.0256630 [CrossRef] [Google Scholar]
- Manickam, A., Jiang, J., Zhou, Y., Sagar, A., Soundrapandiyan, R., & Samuel, R. D. J. (2021). Automated pneumonia detection on chest X-ray images: A deep learning approach with different optimizers and transfer learning architectures. Measurement, 184, 109953. https://doi.org/10.1016/j.measurement.2021.109953 [CrossRef] [Google Scholar]
- Hashmi, M. F., Katiyar, S., Hashmi, A. W., & Keskar, A. G. (2021). Pneumonia detection in chest X-ray images using compound scaled deep learning model. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 62(3-4), 397–406. https://doi.org/10.1080/00051144.2021.1973297 [Google Scholar]
- Yao, S., Chen, Y., Tian, X., & Jiang, R. (2021). Pneumonia detection using an improved algorithm based on faster r-cnn. Computational and Mathematical Methods in Medicine, 2021, 1–13. https://doi.org/10.1155/2021/8854892 [Google Scholar]
- Arias-Garzón, D., Alzate-Grisales, J. A., OrozcoArias, S., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Mora-Rubio, A., ... & Tabares-Soto, R. (2021). COVID-19 detection in X-ray images using convolutional neural networks. Machine Learning with Applications, 6, 100138. https://doi.org/10.1016/j.mlwa.2021.100138 [CrossRef] [Google Scholar]
- Bushra, K. F., Ahamed, M. A., & Ahmad, M. (2021). Automated detection of COVID-19 from Xray images using CNN and Android mobile. Research on Biomedical Engineering, 37(3), 545–552. https://doi.org/10.1007/s42600-021-00163-2 [CrossRef] [Google Scholar]
- VJ, S. (2021). Deep Learning Algorithm for COVID‐19 Classification Using Chest X‐Ray Images. Computational and Mathematical Methods in Medicine, 2021(1), 9269173. https://doi.org/10.1155/2021/9269173 [Google Scholar]
- Brunese, L., Martinelli, F., Mercaldo, F., & Santone, A. (2020). Machine learning for coronavirus covid-19 detection from chest xrays. Procedia computer science, 176, 2212–2221. https://doi.org/10.1016/j.procs.2020.09.258 [CrossRef] [Google Scholar]
- Sarki, R., Ahmed, K., Wang, H., Zhang, Y., & Wang, K. (2022). Automated detection of COVID-19 through convolutional neural network using chest x-ray images. Plos one, 17(1), e0262052. https://doi.org/10.1371/journal.pone.0262052 [CrossRef] [Google Scholar]
- Ho, T. K. K., & Gwak, J. (2022). Feature-level ensemble approach for COVID-19 detection using chest X-ray images. Plos one, 17(7), e0268430. https://doi.org/10.1371/journal.pone.0268430 [CrossRef] [Google Scholar]
- Rawat, R. M., Garg, S., Jain, N., & Gupta, G. (2021, May). COVID-19 detection using convolutional neural network architectures based upon chest Xrays images. In 2021 5th international conference on intelligent computing and control systems (ICICCS) (pp. 1070–1074). IEEE. doi: 10.1109/ICICCS51141.2021.9432134 [Google Scholar]
- Zouch, W., Sagga, D., Echtioui, A., Khemakhem, R., Ghorbel, M., Mhiri, C., & Hamida, A. B. (2022). Detection of COVID-19 from CT and chest X-ray images using deep learning models. Annals of Biomedical Engineering, 50(7), 825–835. https://doi.org/10.1007/s10439-022-02958-5 [CrossRef] [Google Scholar]
- Aggarwal, S., Gupta, S., Alhudhaif, A., Koundal, D., Gupta, R., & Polat, K. (2022). Automated COVID‐19 detection in chest X‐ray images using fine‐tuned deep learning architectures. Expert Systems, 39(3), e12749. https://doi.org/10.1111/exsy.12749 [CrossRef] [Google Scholar]
- Dileep, P., Jayasri, N., & Raghavender, G. (2023). DETECTION OF COVID-19 FROM CHEST XRAY IMAGES USING CONVOLUTIONAL NEURAL NETWORKS. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 14(03), 604–615. https://doi.org/10.17762/turcomat.v14i03.14097 [Google Scholar]
- Singh, D., Kumar, V., Yadav, V., & Kaur, M. (2021). Deep neural network-based screening model for COVID-19-infected patients using chest X-ray images. International Journal of Pattern Recognition and Artificial Intelligence, 35(03), 2151004. https://doi.org/10.1142/S0218001421510046 [CrossRef] [Google Scholar]
- Giordano, M., Piccinelli, L., & Magno, M. (2022, June). Survey and comparison of milliwatts micro controllers for tiny machine learning at the edge. In 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 94–97). IEEE. https://doi.org/10.1109/AICAS54282.2022.9870017 [Google Scholar]
- Wang, X., Magno, M., Cavigelli, L., & Benini, L. (2020). FANN-on-MCU: An open-source toolkit for energy-efficient neural network inference at the edge of the Internet of Things. IEEE Internet of Things Journal, 7(5), 4403–4417. doi:10.1109/JIOT.2020.2976702 [CrossRef] [Google Scholar]
- A. Devices, “Max78000,” 2022. [Online]: https://www.analog.com/en/products/MAX78000.html [Google Scholar]
- X-ray Dataset-1: https://www.kaggle.com/datasets [Google Scholar]
- X-ray Dataset-2: Haghanifar, Arman; Molahasani Majdabadi, Mahdiyar; Ko, Seokbum (2020). Chest X-Ray Image Repository. figshare. https://figshare.com/articles/dataset/COVID-19_Chest_X-Ray_Image_Repository/12580328 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.