Open Access
Issue
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
Article Number 01009
Number of page(s) 7
Section Artificial Intelligence
DOI https://doi.org/10.1051/itmconf/20246901009
Published online 13 December 2024
  1. H. P. Das et al., «Machine Learning for Smart and Energy-Efficient Buildings», 27 Novembre 2022, arXiv: arXiv:2211.14889. DOI: 10.48550/arXiv.2211.14889. [Google Scholar]
  2. N. El Assri, M. A. Jallal, S. E. El Aoud, S. Chabaa, et A. Zeroual, «Synergistic Neural Network and Velocity Pausing Particle Swarm Optimization for Enhanced Residential Building Energy Efficiency: A Case Study in Kuwait», Eng. Technol. Appi. Sci. Res., vol. 14, no 5, p. 17507–17516, oct. 2024, DOI: 10.48084/etasr.8278. [CrossRef] [Google Scholar]
  3. S. Fathi, R. Srinivasan, A. Fenner, and S. Fathi, “Machine learning applications in urban building energy performance forecasting: A systematic review,” Renewable and Sustainable Energy Reviews, vol. 133, 2020, Art. no. 110287. DOI: 10.1016/j.rser.2020.110287. [CrossRef] [Google Scholar]
  4. K. Amasyali et N. M. El-Gohary, «A review of data- driven building energy consumption prediction studies», Renewable and Sustainable Energy Reviews, vol. 81, p. 1192–1205, janv. 2018, DOI: 10.1016/j.rser.2017.04.095. [CrossRef] [Google Scholar]
  5. S. Ardabili, L. Abdolalizadeh, C. Mako, B. Torok, et A. Mosavi, «Systematic Review of Deep Learning and Machine Learning for Building Energy», Front. Energy Res., vol. 10, mars 2022, DOI: 10.3389/fenrg.2022.786027. [CrossRef] [Google Scholar]
  6. T. Hong, Z. Wang, X. Luo, et W. Zhang, «State-of-the- art on research and applications of machine learning in the building life cycle», Energy and Buildings, vol. 212, p. 109831, avr. 2020, DOI: 10.1016/j.enbuild.2020.109831. [CrossRef] [Google Scholar]
  7. Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties - [Google Scholar]
  8. Ibrahim, D. M. (2020). A dataset for residential buildings energy consumption with statistical and machine learning analysis [Data set]. GitHub. https://github.com/Dr-Dina-M-Ibrahim/A-dataset-for-residential-buildings-energy-consumption-with-statistical-and-machine-learning-analysi». [Google Scholar]
  9. «IESVE. Integrated Environmental Solutions Virtual Environment (IESVE). httpswww.iesve.com.» [Google Scholar]
  10. Pittarello, M.; Scarpa, M.; Ruggeri, A.G.; Gabrielli, L.; Schibuola, L. Artificial Neural Networks to Optimize Zero Energy Building (ZEB) Projects from the Early Design Stages. Appl. Sci. 2021, 11, 5377. https://doi.org/10.3390/app11125377. [CrossRef] [Google Scholar]
  11. R. Kumar, R. K. Aggarwal, et J. D. Sharma, «Energy analysis of a building using artificial neural network: A review», Energy and Buildings, vol. 65, p. 352–358, oct. 2013, DOI: 10.1016/j.enbuild.2013.06.007. [CrossRef] [Google Scholar]
  12. T. Khatib, A. Mohamed, K. Sopian, et M. Mahmoud, «Solar Energy Prediction for Malaysia Using Artificial Neural Networks», International Journal of Photoenergy, vol. 2012, no 1, p. 419504, 2012, DOI: 10.1155/2012/419504. [Google Scholar]
  13. Y. Mo, D. Zhao, et M. Syal, «Effective Features to Predict Residential Energy Consumption Using Machine Learning», p. 284–291, juin 2019, DOI: 10.1061/9780784482445.036. [Google Scholar]
  14. L. N. Nyakundi, «PREDICTING ELECTRICITY CONSUMPTION IN NORWAY: A COMPARISON OF MACHINE LEARNING MODELS», Master thesis, Norwegian University of Life Sciences, 2024. [Google Scholar]
  15. Y. Sun, X. Wang, Y. Chen, et Z. Liu, «A modified whale optimization algorithm for large-scale global optimization problems», Expert Systems with Applications, vol. 114, p. 563–577, déc. 2018, DOI: 10.1016/j.eswa.2018.08.027. [CrossRef] [Google Scholar]
  16. S. Mirjalili et A. Lewis, «The Whale Optimization Algorithm», Advances in Engineering Software, vol. 95, p. 51–67, mai 2016, DOI: 10.1016/j.advengsoft.2016.01.008. [CrossRef] [Google Scholar]
  17. L. Abualigah et al., «8 - Whale optimization algorithm: analysis and full survey», in Metaheuristic Optimization Algorithms, L. Abualigah, Éd., Morgan Kaufmann, 2024, p. 105–115. DOI: 10.1016/B978-0-443-13925-3.00015-7. [CrossRef] [Google Scholar]
  18. R. Wang, S. Lu, et Q. Li, «Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings», Sustainable Cities and Society, vol. 49, p. 101623, août 2019, DOI: 10.1016/j.scs.2019.101623. [CrossRef] [Google Scholar]
  19. A. A. Al-Shargabi, A. Almhafdy, D. M. Ibrahim, M. Alghieth, et F. Chiclana, «Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures», Journal of Building Engineering, vol. 54, p. 104577, août 2022, DOI: 10.1016/j.jobe.2022.104577. [CrossRef] [Google Scholar]
  20. M. W. Ahmad, M. Mourshed, et Y. Rezgui, «Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption», Energy and Buildings, vol. 147, p. 77–89, juill. 2017, DOI: 10.1016/j.enbuild.2017.04.038. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.