Open Access
Issue
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
Article Number 02004
Number of page(s) 6
Section Health
DOI https://doi.org/10.1051/itmconf/20246902004
Published online 13 December 2024
  1. Naeem, A., Farooq, M. S., Khelifi, A., & Abid, A. (2020). Malignant melanoma classification using deep learning: datasets, performance measurements, challenges and opportunities. IEEE access, 8, 110575–110597. [CrossRef] [Google Scholar]
  2. Bardou, D., Zhang, K., & Ahmad, S. M. (2018). Classification of breast cancer based on histology images using convolutional neural networks. Ieee Access, 6, 24680–24693. [CrossRef] [Google Scholar]
  3. Gupta, S., Gupta, M. K., Shabaz, M., & Sharma, A. (2022). Deep learning techniques for cancer classification using microarray gene expression data. Frontiers in Physiology, 13, 952709. [CrossRef] [Google Scholar]
  4. Alhassan, A. M., & Zainon, W. M. N. W. (2021). Review of feature selection, dimensionality reduction and classification for chronic disease diagnosis. IEEE Access, 9, 87310–87317. [CrossRef] [MathSciNet] [Google Scholar]
  5. Saber, A., Sakr, M., Abo-Seida, O. M., Keshk, A., & Chen, H. (2021). A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access, 9, 71194–71209. [CrossRef] [Google Scholar]
  6. El Kafrawy, P., Fathi, H., Qaraad, M., Kelany, A. K., & Chen, X. (2021). An efficient SVM-based feature selection model for cancer classification using high-dimensional microarray data. IEEE Access, 9, 155353–155369. [CrossRef] [Google Scholar]
  7. Sara, H. B., & Jihad, H. B. (2024, April). Artificial Intelligence Application for the Classification of Central Nervous System Tumors Based on Blood Biomarkers. In 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST) (pp. 1–5). IEEE. [Google Scholar]
  8. Singh, N., & Singh, P. (2021). A hybrid ensemblefilter wrapper feature selection approach for medical data classification. Chemometrics and Intelligent Laboratory Systems, 217, 104396. [CrossRef] [Google Scholar]
  9. Raj, R. J. S., Shobana, S. J., Pustokhina, I. V., Pustokhin, D. A., Gupta, D., & Shankar, K. J. I. A. (2020). Optimal feature selection-based medical image classification using deep learning model in internet of medical things. IEEE Access, 8, 5800658017. [Google Scholar]
  10. Mishra, D., & Sahu, B. (2011). Feature selection for cancer classification: a signal-to-noise ratio approach. International Journal of Scientific & Engineering Research, 2(4), 1–7. [Google Scholar]
  11. Haq, A. U., Li, J. P., Saboor, A., Khan, J., Wali, S., Ahmad, S., … & Zhou, W. (2021). Detection of breast cancer through clinical data using supervised and unsupervised feature selection techniques. IEEE Access, 9, 22090–22105. [CrossRef] [Google Scholar]
  12. Zhang, D., Zou, L., Zhou, X., & He, F. (2018). Integrating feature selection and feature extraction methods with deep learning to predict clinical outcome of breast cancer. leee Access, 6, 2893628944. [Google Scholar]
  13. Ramaswamy, R., Kandhasamy, P., & Palaniswamy, S. (2023). Feature selection for Alzheimer’s gene expression data using modified binary particle swarm optimization. IETE Journal of Research, 69(1), 9–20. [CrossRef] [Google Scholar]
  14. Mohammed, B., Hamdan, M., Bassi, J. S., Jamil, H. A., Khan, S., Elhigazi, A., … & Marsono, M. N. (2020). Edge computing intelligence using robust feature selection for network traffic classification in internet-of-things. IEEE Access, 8, 224059224070. [Google Scholar]
  15. Bugata, P., & Drotar, P. (2020). On some aspects of minimum redundancy maximum relevance feature selection. Science China Information Sciences, 63(1), 112103. [CrossRef] [MathSciNet] [Google Scholar]
  16. Huang, M., Sun, L., Xu, J., & Zhang, S. (2020). Multilabel feature selection using relief and minimum redundancy maximum relevance based on neighborhood rough sets. IEEE Access, 8, 62011–62031. [CrossRef] [Google Scholar]
  17. Wu, W., & Zhou, H. (2017). Data-driven diagnosis of cervical cancer with support vector machinebased approaches. IEEE Access, 5, 25189–25195. [CrossRef] [Google Scholar]
  18. Houssein, E. H., Abdelminaam, D. S., Hassan, H. N., Al-Sayed, M. M., & Nabil, E. (2021). A hybrid barnacles mating optimizer algorithm with support vector machines for gene selection of microarray cancer classification. IEEE Access, 9, 6489564905. [Google Scholar]
  19. Richhariya, B., Tanveer, M., Rashid, A. H., & Alzheimer’s Disease Neuroimaging Initiative. (2020). Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomedical Signal Processing and Control, 59, 101903. [CrossRef] [Google Scholar]
  20. Salman, O., Elhajj, I. H., Kayssi, A., & Chehab, A. (2020). A review on machine learning-based approaches for Internet traffic classification. Annals of Telecommunications, 75(11), 673–710. [CrossRef] [Google Scholar]
  21. Chaudhari, P., Agarwal, H., & Bhateja, V. (2021). Data augmentation for cancer classification in oncogenomics: an improved KNN based approach. Evolutionary Intelligence, 14, 489–498. [CrossRef] [MathSciNet] [Google Scholar]
  22. Wazery, Y. M., Saber, E., Houssein, E. H., Ali, A. A., & Amer, E. (2021). An efficient slime mould algorithm combined with k-nearest neighbor for medical classification tasks. IEEE Access, 9, 113666–113682. [CrossRef] [Google Scholar]
  23. Varan, M., Azimjonov, J., & MaÇal, B. (2023). Enhancing Prostate Cancer Classification by Leveraging Key Radiomics Features and Using the Fine-Tuned Linear SVM Algorithm. IEEE Access. [Google Scholar]
  24. Saber, A., Sakr, M., Abo-Seida, O. M., Keshk, A., & Chen, H. (2021). A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access, 9, 71194–71209. [CrossRef] [Google Scholar]
  25. Hirra, I., Ahmad, M., Hussain, A., Ashraf, M. U., Saeed, I. A., Qadri, S. F., … & Alfakeeh, A. S. (2021). Breast cancer classification from histopathological images using patch-based deep learning modeling. IEEE Access, 9, 24273–24287. [CrossRef] [Google Scholar]
  26. Sakri, S. B., Rashid, N. B. A., & Zain, Z. M. (2018). Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access, 6, 29637–29647. [CrossRef] [Google Scholar]
  27. Lee, S. A., Cho, H. C., & Cho, H. C. (2021). A novel approach for increased convolutional neural network performance in gastric-cancer classification using endoscopic images. IEEE Access, 9, 51847–51854. [CrossRef] [Google Scholar]
  28. Kabir, M. F., Chen, T., & Ludwig, S. A. (2023). A performance analysis of dimensionality reduction algorithms in machine learning models for cancer prediction. Healthcare Analytics, 3, 100125. [CrossRef] [Google Scholar]
  29. Ramírez-Mena, A., Andrés-León, E., Alvarez-Cubero, M. J., Anguita-Ruiz, A., Martinez-Gonzalez, L. J., & Alcala-Fdez, J. (2023). Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression. Computer Methods and Programs in Biomedicine, 240, 107719. [CrossRef] [Google Scholar]
  30. Zarbakhsh, P. (2023). Spatial attention mechanism and cascade feature extraction in a U-Net model for enhancing breast tumor segmentation. Applied Sciences, 13(15), 8758. [CrossRef] [Google Scholar]
  31. Castiglioni, I., Rundo, L., Codari, M., Di Leo, G., Salvatore, C., Interlenghi, M., … & Sardanelli, F. (2021). AI applications to medical images: From machine learning to deep learning. Physica medica, 83, 9–24. [CrossRef] [Google Scholar]
  32. Mani, K., & Rajaguru, H. (2024). A framework for performance enhancement of classifiers in detection of prostate cancer from microarray gene. Heliyon, 10(9). [Google Scholar]
  33. Rahimi, M. R., Makarem, D., Sarspy, S., Mahdavi, S. A., Albaghdadi, M. F., & Armaghan, S. M. (2023). Classification of cancer cells and gene selection based on microarray data using MOPSO algorithm. Journal of Cancer Research and Clinical Oncology, 149(16), 15171–15184. [CrossRef] [Google Scholar]
  34. Ding, X., Yang, F., & Ma, F. (2022). An efficient model selection for linear discriminant functionbased recursive feature elimination. Journal of Biomedical Informatics, 129, 104070. [CrossRef] [Google Scholar]
  35. Abdulwahab, H. M., Ajitha, S., Saif, M. A. N., Murshed, B. A. H., & Ghanem, F. A. (2024). MOBCSA: Multi-Objective Binary Cuckoo Search Algorithm for Features Selection in Bioinformatics. IEEE Access. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.