Open Access
Issue |
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 6 | |
Section | Health | |
DOI | https://doi.org/10.1051/itmconf/20246902008 | |
Published online | 13 December 2024 |
- N. Mohamed, C. Lakhmissi, and H. Nadji, “Classification of ECG signals using deep neural networks,” The Journal of Engineering and Exact Sciences, vol. 9, no. 5, pp. 16041–01e, 2023. [CrossRef] [Google Scholar]
- P. Sindreu, I. Mansergas, D. Cano, and O. Casas, “Standard 12-lead ECG synthesis from homecare wearable measures,” in 2023 IEEE International Workshop on Metrology for Industry 4.0 & loT (MetroInd4.0&IoT), Brescia, Italy, 2023, pp. 148–152. [CrossRef] [Google Scholar]
- M. Chmelevsky, S. Zubarev, S. Khamzin, A. Dokuchaev, A. Bazhutina, A. Sinitca, M. Budanova, and A. Auricchio, “Clinical evaluation of the new 12-lead ECG noninvasive epi-endocardial mapping technology,” Europace, vol. 25, no. Supplement_1, pp. euad122–647, 2023. [CrossRef] [Google Scholar]
- D. S. Knecht, F. Waldmann, R. Kuhn, D. Mannhart, M. Kuhne, C. Sticherling, P. Badertscher, and R. Wildhaber, “Technical characterization of the single-lead electrocardiogram signal from four different smartwatches and its clinical implications,” Europace, vol. 25, no. Suppl 1, 2023. [Google Scholar]
- F. M. Kaffah, H. P. Kurniawan, L. Farhatuaini, I. Rusydi, et al., “Utilizing Deep Learning Methods for Heart Defect Identification via Electrocardiogram (ECG): A Literature Review,” Journal of Applied Artificial Intelligence, vol. 5, no. 1, pp. 28–40, 2024. [CrossRef] [Google Scholar]
- A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, K. Kavukcuoglu, et al., “Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, vol. 12, 2016. [Google Scholar]
- A. K. Singh and S. Krishnan, “ECG signal feature extraction trends in methods and applications,” BioMedical Engineering OnLine, vol. 22, no. 1, p. 22, 2023. [CrossRef] [Google Scholar]
- K. Bruce, A. K. Moore, I. Mello, T. Hilliard, and M. Day, “Basics of the 12-lead ECG,” Nursing2023, vol. 53, no. 11, pp. 20–25, 2023. [CrossRef] [Google Scholar]
- “12 Lead eCg Placement Guide,” [online] Available: https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations. [Google Scholar]
- “Electrical axis in ECG,” [online] Available: https://johnsonfrancis.org/professional/electrical-axis-in-ecg/. [Google Scholar]
- S. Hong, W. Zhang, C. Sun, Y. Zhou, and H. Li, “Practical lessons on 12-lead ECG classification: Meta-analysis of methods from PhysioNet/computing in cardiology challenge 2020,” Frontiers in Physiology, vol. 12, p. 811661, 2022. [CrossRef] [Google Scholar]
- J. Sohn, S. Yang, J. Lee, Y. Ku, and H. C. Kim, “Reconstruction of 12-lead electrocardiogram from a three-lead patch-type device using a LSTM network,” Sensors, vol. 20, no. 11, p. 3278, 2020. [CrossRef] [Google Scholar]
- A. S. Hadjiantoni, “Is the correct anatomical placement of the electrocardiogram (ECG) electrodes essential to diagnosis in the clinical setting? A systematic review,” 2020. [Google Scholar]
- S. C. Beco, J. R. Pinto, and J. S. Cardoso, “Electrocardiogram lead conversion from singlelead blindly-segmented signals,” BMC Medical Informatics and Decision Making, vol. 22, no. 1, p. 314, 2022. [CrossRef] [Google Scholar]
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention--MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241, 2015. [Google Scholar]
- J. Sohn, S. Yang, J. Lee, Y. Ku, et H. C. Kim, “Reconstruction of 12-lead electrocardiogram from a three-lead patch-type device using a LSTM network,” Sensors, vol. 20, no. 11, p. 3278, 2020. [CrossRef] [Google Scholar]
- J. Lee, K. Oh, B. Kim, and S. K. Yoo, “Synthesis of electrocardiogram V-lead signals from limb-lead measurement using R-peak aligned generative adversarial network,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1265–1275, 2019. [Google Scholar]
- “PhysioNet ECG Data,” [online] Available: https://physionet.org/about/database/. [Google Scholar]
- R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet,” 1995. [Google Scholar]
- P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, and T. Schaeffter, “PTB-XL, a large publicly available electrocardiography dataset,” Scientific Data, 2020. [Google Scholar]
- P. Wagner, N. Strodthoff, R. Bousseljot, W. Samek, and T. Schaeffter, “PTB-XL, a large publicly available electrocardiography dataset (version 1.0.1),” PhysioNet, 2020. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.