Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 01008
Number of page(s) 10
Section Traffic Prediction and Analysis
DOI https://doi.org/10.1051/itmconf/20257001008
Published online 23 January 2025
  1. X. Guo, Q. Zhang, M. Peng, et al. Explainable traffic flow prediction with large language models. arXiv preprint arXiv:2404.02937 (2024). [Google Scholar]
  2. C. Zhou, P. Lin. A traffic volume forecasting method based on multi-channel transformer. Appl. Res. Comput./Jisuanji Yingyong Yanjiu 40, 2 (2023). [Google Scholar]
  3. H. Yuan, Z. Chen. A short-term traffic flow forecasting algorithm based on time convolutional neural network. J. South China Univ. Technol. (Nat. Sci. Ed.) 48, 11 (2020). [Google Scholar]
  4. S. H. Luo, Y. Yang. A travel time prediction method based on deep learning and metalearning. J. Nanjing Univ. (Nat. Sci.) 58, 4: 561–569 (2022). [Google Scholar]
  5. W. C. Peng, S. N. Guo, H. Y. Wan, et al. Spatiotemporal multimodal point process for traffic accident prediction. Appl. Res. Comput./Jisuanji Yingyong Yanjiu 40, 8 (2023). [Google Scholar]
  6. F. Alhaek, W. Liang, T. M. Rajeh, et al. Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach. Knowl.-Based Syst. 286, 111406 (2024). [CrossRef] [Google Scholar]
  7. M. Fabris, R. Ceccato, A. Zanella. Efficient sensors selection for traffic flow monitoring: An overview of model-based techniques leveraging network observability. arXiv preprint arXiv:2404.08588 (2024). [Google Scholar]
  8. N. Jiang, H. Yuan, J. Si, et al. Towards effective next POI prediction: Spatial and semantic augmentation with remote sensing data. arXiv preprint arXiv:2404.04271 (2024). [Google Scholar]
  9. L. Sun, M. Liu, G. Liu, et al. FD-TGCN: Fast and dynamic temporal graph convolution network for traffic flow prediction. Inf. Fusion 106, 102291 (2024). [CrossRef] [Google Scholar]
  10. S. Lee, C. Park. Continual traffic forecasting via mixture of experts. arXiv preprint arXiv:2406.03140 (2024). [Google Scholar]
  11. S. C. Rajkumar, V. P. Optimized traffic flow prediction based on cluster formation and reinforcement learning. Int. J. Commun. Syst. 36, 12: e4178 (2023). [CrossRef] [Google Scholar]
  12. Z. Qiu, T. Zhu, Y. Jin, et al. A graph attention fusion network for event-driven traffic speed prediction. Inf. Sci. 622, 405-423 (2023). [CrossRef] [Google Scholar]
  13. Y. Zhang, Q. Cheng, Y. Liu, et al. Full-scale spatio-temporal traffic flow estimation for city-wide networks: A transfer learning based approach. Transportmetrica B: Transp. Dyn. 11, 1: 869–895 (2023). [CrossRef] [Google Scholar]
  14. Z. Liu, G. Zheng, Y. Yu. Cross-city few-shot traffic forecasting via traffic pattern bank. In Proc. 32nd ACM Int. Conf. Inf. Knowl. Manag. 1451–1460 (2023). [Google Scholar]
  15. Q. Shi, W. Zheng. A comparison of short-term traffic flow forecasting methods for road networks. J. Transp. Eng. 4, 4: 68–71 (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.