Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 6 | |
Section | Traffic Prediction and Analysis | |
DOI | https://doi.org/10.1051/itmconf/20257001017 | |
Published online | 23 January 2025 |
- E. Yurtsever, J. Lambert, A. Carballo, K. Takeda, A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access, vol. 8, pp. 58443–58469 (2020). [CrossRef] [Google Scholar]
- C. Liu, S. Lee, S. Varnhagen, H. E. Tseng, Path planning for autonomous vehicles using model predictive control, 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, pp. 174–179 (2017). [CrossRef] [Google Scholar]
- J. Zhang, W. Wang, C. Lu et al., Lightweight deep network for traffic sign classification. Ann. Telecommun., 75, 369-379 (2020). [CrossRef] [Google Scholar]
- D. Cireşan, U. Meier, J. Masci, J. Schmidhuber, A committee of neural networks for traffic sign classification, The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, pp. 1918–1921 (2011). [Google Scholar]
- R. Timofte, BelgiumTS Dataset, https://btsd.ethz.ch/shareddata/ (2010). [Google Scholar]
- L. Li, Y. Fan, M. Tse, K. Y. Lin, A review of applications in federated learning. Computers & Industrial Engineering, 149, 106854 (2020). [CrossRef] [Google Scholar]
- P. M. Mammen, Federated learning: Opportunities and challenges. arXiv preprint arXiv:2101.05428 (2021). [Google Scholar]
- P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, … S. Zhao, Advances and open problems in federated learning. Foundations and Trends in Machine Learning, 14(1-2), 1–210 (2021). [CrossRef] [Google Scholar]
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324 (1998). [CrossRef] [Google Scholar]
- T. Sun, D. Li, B. Wang, Decentralized federated averaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4289–4301 (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.