Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 6 | |
Section | Traffic Prediction and Analysis | |
DOI | https://doi.org/10.1051/itmconf/20257001021 | |
Published online | 23 January 2025 |
- Y. Zhang, X. Wang, Q. Li, Y. Chen, An efficient cybersecurity attack detection model using machine learning techniques. Cluster Comput. 2024, s10586-024-04662-6 (2024) [Google Scholar]
- J. Li, H. Zhang, T. Wong, A novel deep learning-based approach for network intrusion detection. In: P. Zhou, Q. Lin (Eds.), Advances in Data Science and Cybersecurity, (2024), 85–97 [Google Scholar]
- Y. Zhou, L. Huang, X. Zhang, S. Liu, A review of network security monitoring based on machine learning techniques. J. Inf. Secur. Appl. 60, 102864 (2021) [Google Scholar]
- D. George, S. Liu, Enhancing cybersecurity threat detection using machine learning. J. Cybersecurity Res. 14, 112-125 (2021) [Google Scholar]
- T. Jones, P. Smith, Advanced threat detection using AI-driven techniques. Network Secur. 2018, 10-14 (2018). [Google Scholar]
- P. Zhou, Q. Lin, Enhancing cybersecurity with machine learning models. Advances in Data Science and Cybersecurity, (2022), 85–97 [Google Scholar]
- S. G. M. Rahman, M. S. Hossain, K. A. M. Khair, A hybrid machine learning approach for intrusion detection systems. J. Netw. Comput. Appl. 123, 90-99 (2019) [Google Scholar]
- R. B. K. Prabhu, A. N. Jadhav, M. R. Patil, A comprehensive review on machine learning-based intrusion detection systems. Int. J. Inf. Secur. 20, 1-24 (2021) [CrossRef] [Google Scholar]
- A. A. M. Khedher, A. M. Khlifi, M. A. Abid, Anomaly-based intrusion detection system using deep learning techniques. Future Gener. Comput. Syst. 106, 263-275 (2020) [Google Scholar]
- T. Alharbi, M. M. Khan, R. S. Alzahrani, Performance evaluation of machine learning algorithms for intrusion detection systems. J. King Saud Univ. Comput. Inf. Sci. 34, 571-580 (2022) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.