Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 8 | |
Section | Machine Learning in Healthcare and Finance | |
DOI | https://doi.org/10.1051/itmconf/20257002004 | |
Published online | 23 January 2025 |
- R. R. Zhang, et al. Pointclip: Point cloud understanding by clip. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. (2022). [Google Scholar]
- S. Shen, et al. How much can clip benefit vision-and-language tasks? arXiv preprint arXiv:2107.06383 (2021). [Google Scholar]
- C. Szegedy, et al. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013). [Google Scholar]
- K. Alex, S. Ilya, and H. Geoff. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, pages 1106-1114, (2012). [Google Scholar]
- I. J. Goodfellow, S. Jonathon, and S. Christian. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014). [Google Scholar]
- A. Madry, et al. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017). [Google Scholar]
- S. Geisler, et al. Attacking large language models with projected gradient descent. arXiv preprint arXiv:2402.09154 (2024). [Google Scholar]
- D. Moosavi, M. Seyed, F. Alhussein, and F. Pascal. Deepfool: a simple and accurate method to fool deep neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition. (2016). [Google Scholar]
- S. Wang, and C. H. Chang. Fingerprinting deep neural networks-a deepfool approach. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, (2021). [Google Scholar]
- J. I. N. Xiaying, L. I. Yang, and P. A. N. Quan. DE-JSMA: a sparse adversarial attack algorithm for SAR-ATR models. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 41(6): 1170-1178 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- F. Faghri, D. J. Fleet, J. R. Kiros, et al. Vse++: Improving visual-semantic embeddings with hard negatives[J]. arXiv preprint arXiv:1707.05612, (2017). [Google Scholar]
- W. Van Gansbeke, et al. Scan: Learning to classify images without labels. European conference on computer vision. Cham: Springer International Publishing, (2020). [Google Scholar]
- A. Radford, et al. Learning transferable visual models from natural language supervision. International conference on machine learning. PMLR, (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.