Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 02007
Number of page(s) 7
Section Machine Learning in Healthcare and Finance
DOI https://doi.org/10.1051/itmconf/20257002007
Published online 23 January 2025
  1. T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, et al. Huggingface’s transformers: state-of-the-art natural language processing. arXiv e-prints. (2019). [Google Scholar]
  2. A. Vaswani, et al. Attention Is All You Need. In I. Guyon et al. (Eds.), Advances in Neural Information Processing Systems (pp. 5998-6008). Curran Associates, Inc. (2017). [Google Scholar]
  3. G. Ding. Analyzing literary topics: An NLP approach. Foreign Language and Literature Studies (05), 451-464. DOI: 10.19716/j.1672-4720.2020.05.01ding. (2020). [Google Scholar]
  4. L. Zeng, J. Su, C. Yang and Y. Qian, “A Review of Natural Language Processing Technology for Chinese Language and Literature,” 2022 International Communication Engineering and Cloud Computing Conference (CECCC), Nanjing, China, pp. 1-6, DOI: 10.1109/CECCC56460.2022.10069077. (2022). [Google Scholar]
  5. L. Li, L. Dong and H. Ma, Research on Automatic Scoring of Chinese Composition Based on BERT Model. Journal of China Examinations (05), 73-80. DOI: 10.19360/j.cnki.11-3303/g4.2022.05.009. (2022). [Google Scholar]
  6. Y. Yi, Z. He, L. Li, J. Zhou and Y. Qu. A Traditional Chinese Poetry Style Identification Calculation Improvement Model. Computer Science (07), 156-158. (2005). [Google Scholar]
  7. Z. Huang, P. Chen and L. Qian. Lun “Er Shi Shi Ji Zhong Guo Wen Xue”. Literary Review (05), 3-14. (1985). [Google Scholar]
  8. K. S. Chang, S. Owen, The Cambridge History of Chinese Literature. (Cambridge University Press, Cambridge, 2010). [Google Scholar]
  9. Y. Li, Wen Xue Gai Lun. (East China Normal University Press, Shanghai, 2011). [Google Scholar]
  10. J. Devlin, M. W. Chang, K. Lee and K. Toutanova. Bert: pre-training of deep bidirectional transformers for language understanding. (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.