Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 02010
Number of page(s) 8
Section Machine Learning in Healthcare and Finance
DOI https://doi.org/10.1051/itmconf/20257002010
Published online 23 January 2025
  1. K. Yin, A. Moryossef, J. Hochgesang, Y. Goldberg, and M. Alikhani, Including Signed Languages in Natural Language Processing. Association for Computational Linguistics. 1, 7347-7360, (2021) [Google Scholar]
  2. R. Rastgoo, K. Kiani, S. Escalera, and M. Sabokrou, Sign Language Production: A Review. Computing Research Repository. 2103.15910, 3451-3461, (2021) [Google Scholar]
  3. R. Zuo, F. Wei, and B. Mak, Natural Language-Assisted Sign Language Recognition. CVPR 2023, 2303.12080, 14890-14900, (2023): [Google Scholar]
  4. Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 43.1, 172-186 (2021) [Google Scholar]
  5. H. Thomas, HamNoSys—Representing sign language data in language resources and language processing contexts (2004) [Google Scholar]
  6. W. Stokoe, Sign language structure: An outline of the visual communication systems of the American deaf. Journal of deaf studies and deaf education. 10.1, 3-37 (2005) [CrossRef] [Google Scholar]
  7. V. Sutton, https://www.signwriting.org/ [Google Scholar]
  8. K. Yin and J. Read, Better Sign Language Translation with STMC-Transformer. International Committee on Computational Linguistics, 5975-5989 (2020) [Google Scholar]
  9. S. Hassan, M. Seita, L. Berke, Y. Tian, E. Gale, S. Lee, and M. Huenerfauth, ASL- Homework-RGBD Dataset: An annotated dataset of 45 fluent and non-fluent signers performing American Sign Language homeworks. In Proceedings of the LREC2022 10th Workshop on the Representation and Processing of Sign Languages: Multilingual Sign Language Resources, 67-72 (2022) [Google Scholar]
  10. A. Voskou, K. P. Panousis, H. Partaourides, K. Tolias, and S. Chatzis. A New Dataset for End-to-End Sign Language Translation: The Greek Elementary School Dataset. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW 2310.04753, 1958-1967 (2023) [Google Scholar]
  11. N. Cihan Camgöz, S. Hadfield, O. Koller, H. Ney, and R. Bowden, Neural Sign Language Translation, Computer Vision and Pattern Recognition, 7784-7793 (2018) [Google Scholar]
  12. K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu: a Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 311-318 (2002) [Google Scholar]
  13. A. Moryossef, K. Yin, G. Neubig, and Y. Goldberg, Data Augmentation for Sign Language Gloss Translation.”, AT4SSL@MTSummit 2105.07476, 1-11 (2021) [Google Scholar]
  14. H. Walsh, B. Saunders, and R. Bowden, Changing the Representation: Examining Language Representation for Neural Sign Language Production. CoRR (2022) [Google Scholar]
  15. Z. Jiang, A. Moryossef, M. Mueller, and S. Ebling, Machine Translation between Spoken Languages and Signed Languages Represented in SignWriting. 17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 1706-1724 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.