Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 02016
Number of page(s) 8
Section Machine Learning in Healthcare and Finance
DOI https://doi.org/10.1051/itmconf/20257002016
Published online 23 January 2025
  1. L. Cai, J. Gao, D. Zhao, A review of the application of deep learning in medical image classification and segmentation. Ann. Transl. Med. 8, 713 (2020). [CrossRef] [Google Scholar]
  2. S.-J. Liu, et al. Research on the classification algorithm of crop pathology images based on convolutional neural network. Hubei Agric. Sci. 60, 131 (2021). [Google Scholar]
  3. S. Divya, B. Adepu, P. Kamakshi, Image Enhancement and Classification of CIFAR- 10 Using Convolutional Neural Networks, in Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), (2022). [Google Scholar]
  4. F.-O. Giuste, J.-C. Vizcarra, CIFAR-10 image classification using feature ensembles, in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), (2020). [Google Scholar]
  5. L. Beyer, O.-J. Hénaff, A. Kolesnikov, Are We Done with ImageNet? arXiv preprint arXiv:2006.07159 (2020). [Google Scholar]
  6. E.-C. Chen, C.-R. Lee, Towards Fast and Robust Adversarial Training for Image Classification, in Proceedings of the Asian Conference on Computer Vision, (2020). [Google Scholar]
  7. S.-S. Kadam, A.-C. Adamuthe, A.-B. Patil, CNN Model for Image Classification on MNIST and Fashion-MNIST Dataset. Int. J. Comput. Sci. Netw. Secur. 21, 19-24 (2021). [Google Scholar]
  8. L. Wan, M. Zeiler, S. Zhang, et al. Regularization of neural networks using dropconnect, in Proceedings of the 30th International Conference on Machine Learning (ICML), (2013). [Google Scholar]
  9. M. Arya, S.-S. Bedi, Survey on SVM and their application in image classification. Int. J. Inf. Technol. 13, 1867-1877 (2021). [Google Scholar]
  10. B.-T. Jijo, A.-M. Abdulazeez, Classification Based on Decision Tree Algorithm for Machine Learning, J. Appl. Sci. Technol. Trends. 1, 56-61 (2021). [Google Scholar]
  11. Chandrasekaran, Raman S., Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review, in Proceedings of the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, (2020). [Google Scholar]
  12. M.-Z. Alom, T.-M Taha, C. Yakopcic, et al. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018). [Google Scholar]
  13. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014). [Google Scholar]
  14. K. He, X. Zhang, S. Ren, et al. Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2016). [Google Scholar]
  15. A. Dosovitskiy, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929 (2020). [Google Scholar]
  16. A. Fred, Deep learning using Vision Transformers. Appl. Sci. 13, 987-1005 (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.