Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 02019
Number of page(s) 8
Section Machine Learning in Healthcare and Finance
DOI https://doi.org/10.1051/itmconf/20257002019
Published online 23 January 2025
  1. H.-S. Fang, J. Li, H. Tang, et al. Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time. IEEE Trans. Pattern Anal. Mach. Intell. 45, 7157-7173 (2022). [Google Scholar]
  2. Y. Huang, S. Zhai, Y. Liu, Deep Learning Based a Novel Method of Classroom Behavior Recognition, in Proceedings of the 2022 IEEE 2nd International Conference on Educational Technology (ICET), Beijing, (2022). [Google Scholar]
  3. J. Hwang, S. Park, N. Kwak, Athlete Pose Estimation by a Global-Local Network, in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, (2017). [Google Scholar]
  4. L. Zhu, Y. Chen, Y. Lin, C. Lin, A. Yuille, Recursive segmentation and recognition templates for image parsing, in Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, (2011). [Google Scholar]
  5. Z. Geng, K. Sun, B. Xiao, Z. Zhang, and J. Wang, Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2021). [Google Scholar]
  6. F. Wang, Y. Li, Beyond physical connections: Tree models in human pose estimation, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2013). [Google Scholar]
  7. L. He, G. Wang, Q. Liao, J.-H. Xue, Latent variable pictorial structure for human pose estimation on depth images. Neurocomputing. 203, 52-61 (2016). [CrossRef] [Google Scholar]
  8. A. Toshev, C. Szegedy, DeepPose: Human Pose Estimation via Deep Neural Networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2014). [Google Scholar]
  9. S.-E. Wei, V. Ramakrishna, T.-K. Kanade, Y. Sheikh, Convolutional pose machines, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, (2016). [Google Scholar]
  10. A. Newell, K. Yang, J. Deng. Stacked hourglass networks for human pose estimation. in Proceedings of the 14th European Conference on Computer Vision. (2016). [Google Scholar]
  11. K. Sun, B. Xiao, D. Liu, J. Wang, Deep high-resolution representation learning for human pose estimation, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2019). [Google Scholar]
  12. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in Proceedings of the IEEE international conference on computer vision, (2017). [Google Scholar]
  13. Y. Chen, Z. Wang, Y. Peng, et al. Cascaded pyramid network for multi-person pose estimation, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2018). [Google Scholar]
  14. J. Li, C. Wang, H. Zhu, et al. CrowdPose: efficient crowded scenes pose estimation and a new benchmark, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2019). [Google Scholar]
  15. Z. Cao, T. Simon, S.-E. Wei, et al. Realtime multi-person 2D pose estimation using part affinity fields, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2017). [Google Scholar]
  16. A. Newell, Z. Huang, J. Deng. Associative embedding: end-to-end learning for joint detection and grouping. in Proceedings of the Conference on Advances in Neural Information Processing Systems, (2017). [Google Scholar]
  17. G. Papandreou, T. Zhu, L.-C. Chen, et al. Personlab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model, in Proceedings of the European conference on computer vision (ECCV), (2018). [Google Scholar]
  18. S. Kreiss, L. Bertoni, A. Alahi, PifPaf: composite fields for human pose estimation, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2019). [Google Scholar]
  19. B. Cheng, B. Xiao, J. Wang, et al. HigherHRNet: scale aware representation learning for bottom-up human pose estimation, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (2020). [Google Scholar]
  20. S. Johnson, M. Everingham, Clustered pose and nonlinear appearance models for human pose estimation. in Proceedings of the British Machine Vision Conference (BMVC), (2010). [Google Scholar]
  21. B. Sapp, B. Taskar, Modec: Multimodal decomposable models for human pose estimation. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2013). [Google Scholar]
  22. M. Andriluka, L. Pishchulin, P. Gehler, B. Schiele, 2D human pose estimation: New benchmark and state of the art analysis, in Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, (2014). [Google Scholar]
  23. T. Lin, M. Maire, S.J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C. L. Zitnick, Microsoft COCO: common objects in context, in European Conference on Computer Vision, 740-755 (2014). [Google Scholar]
  24. C. Ionescu, D. Papava, V. Olaru, C. Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, in Proceedings of the IEEE transactions on pattern analysis and machine intelligence, (2013). [Google Scholar]
  25. U. Iqbal, M. Garbade, J. Gall, Pose for action-action for pose. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), (2017). [Google Scholar]
  26. Y. Li, S. Jia, Q. Li, BalanceHRNet: An effective network for bottom-up human pose estimation, Neural Netw. 161, 297-305 (2023). [CrossRef] [Google Scholar]
  27. S.-S. Park, H.-J. Kwon, J.-W. Baek, K. Chung, Dimensional Expansion and TimeSeries Data Augmentation Policy for Skeleton-Based Pose Estimation. IEEE Access. 10, 112261-112272 (2022). [CrossRef] [Google Scholar]
  28. X. Zhang, X. Zhou, M. Lin, J. Sun, ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.