Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 03011 | |
Number of page(s) | 11 | |
Section | Image Processing and Computer Vision | |
DOI | https://doi.org/10.1051/itmconf/20257003011 | |
Published online | 23 January 2025 |
- A. H. Ni, S. Meng, X. Geng, P. Li, Z. Li, X. Chen, … & S. Zhang, Time series modeling for heart rate prediction: From ARIMA to transformers. arXiv preprint arXiv:2406.12199 (2024). [Google Scholar]
- M.Y. Hu, S.L. Setyowati, K.A. Notodiputro, Y. Angraini, & L.N.A. Mualifah, Comparison of seasonal ARIMA and support vector machine forecasting method for international arrival in Lombok. Jambura J. Math. 6, 212-219 (2024). [CrossRef] [Google Scholar]
- X. Liu, & W. Wang, Deep time series forecasting models: A comprehensive survey. Math. 12, 1504 (2024). [CrossRef] [Google Scholar]
- V. Ekambaram, A. Jati, N. Nguyen, P. Sinthong, & J. Kalagnanam, Tsmixer: Lightweight MLP-mixer model for multivariate time series forecasting. Proc. 29th ACM SIGKDD Conf. Knowl. Discov. Data Min. 459-469 (2023). [CrossRef] [Google Scholar]
- Q. Luo, S. He, X. Han, Y. Wang, & H. Li, LSTTN: A long-short term transformerbased spatiotemporal neural network for traffic flow forecasting. Knowl. Based Syst. 293, 111637 (2024). [CrossRef] [Google Scholar]
- Y. Nie, N.H. Nguyen, P. Sinthong, & J. Kalagnanam, A time series is worth 64 words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730 (2022). [Google Scholar]
- IEA, Monthly electricity statistics. IEA, 2024/2/9. Paris, https://www.iea.org/data-and-statistics/data-product/monthly-electricity-statistics, Licence: Terms of Use for Non- CC Material. [Google Scholar]
- M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, & J.W. Vaughan, Advances in neural information processing systems 34 (2021). [Google Scholar]
- G.E. Box, G.M. Jenkins, G.C. Reinsel, & G.M. Ljung, Time series analysis: Forecasting and control. John Wiley & Sons (2015). [Google Scholar]
- W.A. Woodward, B.P. Sadler, & S. Robertson, Time series for data science: Analysis and forecasting. Chapman and Hall/CRC (2022). [CrossRef] [Google Scholar]
- S.A. Chen, C.L. Li, N. Yoder, S.O. Arik, & T. Pfister, Tsmixer: An all-MLP architecture for time series forecasting. arXiv preprint arXiv:2303.06053 (2023). [Google Scholar]
- R. Llugsi, S. El Yacoubi, A. Fontaine, & P. Lupera, Comparison between Adam, AdaMax and Adam W optimizers to implement a weather forecast based on neural networks for the Andean city of Quito. Proc. 2021 IEEE Fifth Ecuad. Tech. Chap. Meet. 1-6 (2021). [Google Scholar]
- H. Qian, P. Ma, S. Gao, & Y. Song, Soft reordering one-dimensional convolutional neural network for credit scoring. Knowl. Based Syst. 266, 110414 (2023). [CrossRef] [Google Scholar]
- K.R.A. Muslihin, & B.N. Ruchjana, Model autoregressive moving average (ARMA) untuk peramalan tingkat inflasi di Indonesia. Limits J. Math. Appl. 20, 209-218 (2023). [Google Scholar]
- A.R. Ajiboye, R. Abdullah-Arshah, H. Qin, & H. Isah-Kebbe, Evaluating the effect of dataset size on predictive model using supervised learning technique. Int. J. Comput. Syst. Softw. Eng. 1, 75-84 (2015). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.