Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03024
Number of page(s) 10
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003024
Published online 23 January 2025
  1. J. Porteous, Humor and social life. Philos. East West 39, 279-288 (1989). [CrossRef] [Google Scholar]
  2. S. Aaronson, Essentials of complexity-theoretic stand-up comedy. https://scottaaronson.blog/?p=414 (2009). [Google Scholar]
  3. A. Cann, K. Stilwell, K. Taku, Humor styles, positive personality and health. Eur. J. Psychol. 6, 213-235 (2010). [CrossRef] [Google Scholar]
  4. W. Ruch, Psychology of humor, in V. Raskin (Ed.), The Primer of Humor Research (De Gruyter Mouton, Berlin, New York, 2008), pp. 17-100. [CrossRef] [Google Scholar]
  5. C. Larkin-Galiñanes, An overview of humor theory, in The Routledge Handbook of Language and Humor (Routledge, 2017), pp. 4-16. [CrossRef] [Google Scholar]
  6. S. Attardo, The semantic foundations of cognitive theories of humor. Humor 10, 395-420 (1997). [CrossRef] [Google Scholar]
  7. J. Wilkins, A.J. Eisenbraun, Humor theories and the physiological benefits of laughter. Holist. Nurs. Pract. 23, 349-354 (2009). [CrossRef] [Google Scholar]
  8. C. Warren, A. Barsky, A.P. McGraw, What makes things funny? An integrative review of the antecedents of laughter and amusement. Pers. Soc. Psychol. Rev. 25, 41-65 (2021). [CrossRef] [Google Scholar]
  9. A. Mendiburo-Seguel, D. Páez, F. Martínez-Sánchez, Humor styles and personality: A meta-analysis of the relation between humor styles and the Big Five personality traits. Scand. J. Psychol. 56, 335-340 (2015). [CrossRef] [Google Scholar]
  10. S. Jentzsch, K. Kersting, ChatGPT is fun, but it is not funny! Humor is still challenging Large Language Models. arXiv:2306.04563 (2023). [Google Scholar]
  11. V. Sanh, DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv:1910.01108 (2019). [Google Scholar]
  12. Conference on Fairness, Accountability, and Transparency, 1622-1636 (2022). [Google Scholar]
  13. I. Annamoradnejad, G. Zoghi, Colbert: Using BERT sentence embedding in parallel neural networks for computational humor. arXiv:2004.12765 (2020). [Google Scholar]
  14. J. Zhang, L. Jain, Y. Guo, J. Chen, K.L. Zhou, S. Suresh, et al., Humor in AI: Massive Scale Crowd-Sourced Preferences and Benchmarks for Cartoon Captioning. arXiv:2406.10522 (2024). [Google Scholar]
  15. Y. Su, Computer-generated Humour Based on GPT-2, in Proceedings of the 2022 IEEE 2nd International Conference on Data Science and Computer Application (IEEE, 2022), pp. 890-893. [Google Scholar]
  16. Z. Li, K. Ren, X. Jiang, B. Li, H. Zhang, D. Li, Domain generalization using pretrained models without fine-tuning. arXiv:2203.04600 (2022). [Google Scholar]
  17. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.A. Lachaux, T. Lacroix, et al., Llama: Open and efficient foundation language models. arXiv:2302.13971 (2023). [Google Scholar]
  18. I. Kant, Kritik der Urteilskraft, Vol. 39, Meiner (1913). [Google Scholar]
  19. D. Cortiz, Exploring transformers in emotion recognition: A comparison of BERT, DistilBERT, RoBERTa, XLNet and Electra. arXiv:2104.02041 (2021). [Google Scholar]
  20. H. Qin, M. He, H. Jia, HIMA-Net: humor prediction by self-attention based on key information related to humor, in Proceedings of the 2021 International Conference on Neural Networks, Information and Communication Engineering (SPIE, 2021), pp. 157-163. [Google Scholar]
  21. T. Chaudhary, M. Goel, R. Mamidi, Towards conversational humor analysis and design. arXiv:2103.00536 (2021). [Google Scholar]
  22. Z. Han, J. Wu, C. Huang, Q. Huang, M. Zhao, A review on sentiment discovery and analysis of educational big-data. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10, e1328 (2020). [Google Scholar]
  23. H. He, E.A. Garcia, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21, 1263-1284 (2009). [CrossRef] [Google Scholar]
  24. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.A. Lachaux, T. Lacroix, et al., Llama: Open and efficient foundation language models. arXiv:2302.13971 (2023). [Google Scholar]
  25. J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, et al., Chain-of-thought prompting elicits reasoning in large language models, in Proceedings of the Advances in Neural Information Processing Systems 35 (2022), pp. 24824-24837. [Google Scholar]
  26. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014). [MathSciNet] [Google Scholar]
  27. A. Krogh, J. Hertz, A simple weight decay can improve generalization, in Proceedings of the Advances in Neural Information Processing Systems 4 (1991). [Google Scholar]
  28. R. Pascanu, On the difficulty of training recurrent neural networks. arXiv:1211.5063 (2013). [Google Scholar]
  29. M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, et al., Deep learning with differential privacy, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (ACM, 2016), pp. 308-318. [CrossRef] [Google Scholar]
  30. M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, et al., Deep learning with differential privacy, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (ACM, 2016), pp. 308-318. [CrossRef] [Google Scholar]
  31. T.B. Brown, Language models are few-shot learners. arXiv:2005.14165 (2020). [Google Scholar]
  32. J. Kaplan, S. McCandlish, T. Henighan, T.B. Brown, B. Chess, R. Child, et al., Scaling laws for neural language models. arXiv:2001.08361 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.