Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 03028 | |
Number of page(s) | 9 | |
Section | Image Processing and Computer Vision | |
DOI | https://doi.org/10.1051/itmconf/20257003028 | |
Published online | 23 January 2025 |
- Albalawi, E., Mahesh, T. R., Thakur, A., Kumar, V. V., Gupta, M., Khan, S. B., & Almusharraf, A. 2024. Correction to: Integrated approach of federated learning with transfer learning for classification and diagnosis of brain tumor. BMC Medical Imaging, 24(1), 161. [CrossRef] [Google Scholar]
- Bagave, P., Westberg, M., Dobbe, R., Janssen, M., & Ding, A. Y. 2022. Accountable AI for healthcare IoT systems. In 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA) (pp. 20–28). IEEE. [Google Scholar]
- El-Dahshan, E. A., Mohsen, H. M., Revett, K., & Salem, A. B. M. 2014. Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Systems with Applications, 41(11), 5526–5545. [CrossRef] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2015. Deep residual learning for image recognition. arXiv. https://arxiv.org/abs/1512.03385 [Google Scholar]
- Hemanth, G., Janardhan, M., & Sujihelen, L. 2019. Design and implementing brain tumor detection using machine learning approach. In 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1289–1294). IEEE. [Google Scholar]
- Hemanth, J. 2016. Biomedical Signal and Image Processing in Patient Care. Springer. [Google Scholar]
- Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. 2018. Densely connected convolutional networks. arXiv. https://arxiv.org/abs/1608.06993 [Google Scholar]
- Islam, M., Reza, M. T., Kaosar, M., & Parvez, M. Z. 2023. Effectiveness of federated learning and CNN ensemble architectures for identifying brain tumors using MRI images. Neural Processing Letters, 55(4), 3779–3809. [CrossRef] [Google Scholar]
- Kalpana, V., Chowdary, J., Sravya, T., Avinash, A., Pravallika, P., & Gnanasri, V. 2023. Implemented global model for brain tumor detection using federated learning. In Proceedings of the 2023 International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech) (pp. 1–5). IEEE. [Google Scholar]
- Le Dinh Viet, K., Le Ha, K., Quoc, T. N., & Hoang, V. T. 2023. MRI brain tumor classification based on federated deep learning. In 2023 Zooming Innovation in Consumer Technologies Conference (ZINC) (pp. 131–135). IEEE. [CrossRef] [Google Scholar]
- Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., & Xie, S. 2022. A ConvNet for the 2020s. arXiv. https://arxiv.org/abs/2201.03545 [Google Scholar]
- Loshchilov, I., & Hutter, F. 2019. Decoupled weight decay regularization. arXiv. https://arxiv.org/abs/1711.05101 [Google Scholar]
- Mittal, A. 2018. Workflow of a machine learning project. Towards Data Science. https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94 [Google Scholar]
- Prabukumar, M., Agilandeeswari, L., & Ganesan, K. 2019. An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier. Journal of Ambient Intelligence and Humanized Computing, 10(1), 267–293. [CrossRef] [Google Scholar]
- Shahriar, S., Allana, S., Hazratifard, S.M., & Dara, R. 2023. A Survey of Privacy Risks and Mitigation Strategies in the Artificial Intelligence Life Cycle. IEEE Access, 11, 61829–61854. [CrossRef] [Google Scholar]
- Simonyan, K., & Zisserman, A. 2015. Very deep convolutional networks for large-scale image recognition. arXiv. https://arxiv.org/abs/1409.1556 [Google Scholar]
- Soomro, T. A., Zheng, L., Afifi, A. J., Ali, A., Soomro, S., Yin, M., & Gao, J. 2023. Image Segmentation for MR Brain Tumor Detection Using Machine Learning: A Review. IEEE reviews in biomedical engineering, 16, 70–90. [CrossRef] [Google Scholar]
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. 2015. Rethinking the Inception architecture for computer vision. arXiv. https://arxiv.org/abs/1512.00567 [Google Scholar]
- Tan, M., & Le, Q. V. 2020. EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv. https://arxiv.org/abs/1905.11946 [Google Scholar]
- World Health Organization. 2024. Cancer. World Health Organization. https://www.who.int/health-topics/cancer#tab=tab_1 [Google Scholar]
- Yang, C., Wang, Q., Xu, M., Chen, Z., Bian, K., Liu, Y., & Liu, X. 2021. Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data. In Proceedings of the Web Conference 2021 (pp. 935–946). Association for Computing Machinery. [CrossRef] [Google Scholar]
- Zhou, L., Wang, M., & Zhou, N. 2023. Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection. ArXiv, abs/2404.10026. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.