Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 04028 | |
Number of page(s) | 6 | |
Section | AI and Advanced Applications | |
DOI | https://doi.org/10.1051/itmconf/20257004028 | |
Published online | 23 January 2025 |
- A. H. Al-Ghushami, D. Syed, A. Zainab, A. Abdelshahid, H. Al-Eshaq, F. Alsayed, & R. Alkuwari, Email security: Concept, formulation, and applications, In 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), IEEE, (2022), 825–829 [Google Scholar]
- S. Rao, A. K. Verma, & T. Bhatia, A review on social spam detection: Challenges, open issues, and future directions. Expert Systems with Applications. 186, 115742 (2021) [CrossRef] [Google Scholar]
- P. Teja Nallamothu & M. Shais Khan, Machine learning for SPAM detection. Asian Journal of Advances in Research. 6, 167-179 (2023) [Google Scholar]
- S. O. Olatunji, Improved email spam detection model based on support vector machines. Neural Computing and Applications. 31, 691-699 (2019) [CrossRef] [Google Scholar]
- S. S. Ismail, R. F. Mansour, R. M. Abd El-Aziz, & A. I. Taloba, Efficient E-Mail Spam Detection Strategy Using Genetic Decision Tree Processing with NLP Features. Computational Intelligence and Neuroscience. 2022, 7710005 (2022) [CrossRef] [Google Scholar]
- T. Alkhdour, R. Alrawashdeh, M. Almaiah, R. Alali, S. Salloum, T. H. Aldahiyani, A new technique for detecting email spam risks using LSTM-particle swarm optimization algorithms. Journal of Theoretical and Applied Information Technology. 102, 54825499 (2024) [Google Scholar]
- K. Debnath & N. Kar, Email spam detection using deep learning approach, In 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), IEEE, (2022), 37–41 [CrossRef] [Google Scholar]
- K. U. Santoshi, S. S. Bhavya, Y. B. Sri, & B. Venkateswarlu, Twitter spam detection using naïve bayes classifier, In 2021 6th International Conference on Inventive Computation Technologies (ICICT), IEEE, (2021), 773–777 [Google Scholar]
- I. Wickramasinghe & H. Kalutarage, Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing. 25, 2277-2293 (2021) [CrossRef] [Google Scholar]
- A. Gasparetto, M. Marcuzzo, A. Zangari, & A. Albarelli, A survey on text classification algorithms: From text to predictions. Information. 13, 83 (2022) [CrossRef] [Google Scholar]
- M. M. Kodabagi, Efficient data preprocessing approach for imbalanced data in email classification system, In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), IEEE, (2020), 338–341 [Google Scholar]
- E. R. Setyaningsih & I. Listiowarni, Categorization of exam questions based on bloom taxonomy using naïve bayes and laplace smoothing, In 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), IEEE, (2021), 330–333 [Google Scholar]
- J. Liang, Confusion matrix: Machine learning. POGIL Activity Clearinghouse. 3, 1 (2022) [Google Scholar]
- P. Misra & A. S. Yadav, Improving the classification accuracy using recursive feature elimination with cross-validation. Int. J. Emerg. Technol. 11, 659-665 (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.