Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 04035
Number of page(s) 7
Section AI and Advanced Applications
DOI https://doi.org/10.1051/itmconf/20257004035
Published online 23 January 2025
  1. World Health Organization (WHO), Diabetes, April 5 (2024), https://www.who.int/news-room/fact-sheets/detail/diabetes. [Google Scholar]
  2. International Diabetes Federation (IDF), Facts & Figures (2021) https://idf.org/about-diabetes/diabetes-facts-figures. [Google Scholar]
  3. A. Dagliati, S. Marini, L. Sacchi, G. Cogni, M. Teliti, V. Tibollo, P. De Cata, L. Chiovato, and R. Bellazzi, Machine learning methods to predict diabetes complications, Journal of Diabetes Science and Technology. 12, 2, 295-302 (2017) [Google Scholar]
  4. H. Lai, H. Huang, K. Keshavjee, A. Guergachi, and X. Gao, Predictive models for diabetes mellitus using machine learning techniques, BMC Endocrine Disorders. 19, 1, (2019) [Google Scholar]
  5. UCI Machine Learning Kaggle Team, Pima Indian Diabetes Database (2016) https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database. [Google Scholar]
  6. J. Sessa and D. Syed, Techniques to deal with missing data, in 2016 5th International Conference on Electronic Devices, Systems, and Applications (ICEDSA), Ras Al Khaimah, United Arab Emirates. 1-4 (2016) [Google Scholar]
  7. S. Gopal Krishna Patro and K. Kumar Sahu, Normalization: A Preprocessing Stage. (2015) [Google Scholar]
  8. Z. Vujovic, Classification Model Evaluation Metrics, International Journal of Advanced Computer Science and Applications. 12, 599-606 (2021) [CrossRef] [Google Scholar]
  9. J. Jamal Khanam and S. Y. Foo, A comparison of machine learning algorithms for diabetes prediction, ICT Express. 7, 4, 432-439 (2021) [CrossRef] [Google Scholar]
  10. I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda, Machine learning and data mining methods in diabetes research, Computational and Structural Biotechnology Journal. 15, 104-116 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.