Open Access
Issue
ITM Web Conf.
Volume 71, 2025
International Conference on Mathematics, its Applications and Mathematics Education (ICMAME 2024)
Article Number 01009
Number of page(s) 9
DOI https://doi.org/10.1051/itmconf/20257101009
Published online 06 February 2025
  1. J. C. Hull, Options, Futures, and Other Derivatives (8th ed., Pearson, 2012). [Google Scholar]
  2. R. Sundaram and S. Das, Derivatives: Principle and Practice (2nd ed., McGraw-Hill, 2016). [Google Scholar]
  3. Cboe V. I. X., White Paper Cboe Volatility Index (2019) [Accessed 2025 Jan. 15]. Available: https://www.sfu.ca/~poitras/419_VIX.pdf [Google Scholar]
  4. Tradingview.com [Accessed 2025 Jan. 15]. Available: http://www.tradingview.com [Google Scholar]
  5. E. Allen, Modeling with Ito Stochastic Differential Equations (Springer, 2007). [Google Scholar]
  6. S. Rujivan, “Valuation of volatility derivatives with time-varying volatility: An analytical probabilistic approach using a mixture distribution for pricing nonlinear payoff volatility derivatives in discrete observation case,” J. Comput. Appl. Math., vol. 418, p. 114672, 2023. https://doi.org/10.1016/j.cam.2022.114672 [CrossRef] [Google Scholar]
  7. M. Broadie and A. Jain, “The effect of jumps and discrete sampling on volatility and variance swaps,” Int. J. Theor. Appl. Finan., vol. 11, p. 761, 2008. https://doi.org/10.1142/S0219024908005032 [CrossRef] [Google Scholar]
  8. A. Itkin and P. Carr, “Pricing swaps and options on quadratic variation under stochastic time change models discrete observations case,” Rev. Deriv. Res., vol. 13, p. 141, 2010. https://doi.org/10.1007/s11147-009-9048-z [CrossRef] [Google Scholar]
  9. S.-P. Zhu and G.-H. Lian, “A closed-form exact solution for pricing variance swaps with stochastic volatility,” Math. Finan., vol. 21, p. 233, 2011. https://doi.org/10.1111/j.1467-9965.2010.00436.x [CrossRef] [Google Scholar]
  10. R. J. Elliott and G.-H. Lian, “Pricing variance and volatility swaps in a stochastic volatility model with regime switching: discrete observation case,” Quant. Finance, vol. 13, p. 687, 2013. https://doi.org/10.1080/14697688.2012.676208 [CrossRef] [MathSciNet] [Google Scholar]
  11. W. Zheng and Y. K. Kwok, “Closed form pricing formulas for discretely sampled generalized variance swaps,” Math. Finan., vol. 24, p. 855, 2014. https://doi.org/10.1111/mafi.12016 [CrossRef] [Google Scholar]
  12. C. H. Yuen, W. Zheng, and Y. K. Kwok, “Pricing exotic discrete variance swaps under the 3/2-stochastic volatility models,” Appl. Math. Finan., vol. 22, p. 421, 2015. https://doi.org/10.1080/1350486X.2015.1050525 [CrossRef] [Google Scholar]
  13. X.-J. He and S.-P. Zhu, “A series-form solution for pricing variance and volatility swaps with stochastic volatility and stochastic interest rate,” Comput. Math. Appl., vol. 76, p. 2223, 2018. https://doi.org/10.1016/j.camwa.2018.08.022 [CrossRef] [MathSciNet] [Google Scholar]
  14. W. Liu and S.-P. Zhu, “Pricing variance swaps under the Hawkes jump-diffusion process,” J. Futures Mark., vol. 39, p. 635, 2019. https://doi.org/10.1002/fut.21997 [CrossRef] [Google Scholar]
  15. X.-J. He and S.-P. Zhu, “Variance and volatility swaps under a two-factor stochastic volatility model with regime switching,” Int. J. Theor. Appl. Finan., vol. 22, p. 1, 2019. https://doi.org/10.1142/S0219024919500092 [Google Scholar]
  16. B.-Z. Yang, J. Yue, M.-H. Wang, and N.-J. Hu, “Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity,” Appl. Math. Comput., vol. 355, p. 73, 2019. https://doi.org/10.1016/j.amc.2019.02.063 [MathSciNet] [Google Scholar]
  17. S. Rujivan and U. Rakwongwan, “Analytically pricing volatility swaps and volatility options with discrete sampling: Nonlinear payoff volatility derivatives,” Commun. Nonlinear Sci. Numer. Simul., vol. 100, p. 105849, 2021. https://doi.org/10.1016/j.cnsns.2021.105849 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.