Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 8 | |
Section | Reinforcement Learning and Optimization Techniques | |
DOI | https://doi.org/10.1051/itmconf/20257301002 | |
Published online | 17 February 2025 |
- P. C. Gilmore, R. E. Gomory, A linear programming approach to the cutting-stock problem. Operations research, 9, 849 (1961) [CrossRef] [MathSciNet] [Google Scholar]
- K. Grzybowska, A. Awasthi, Literature review on sustainable logistics and sustainable production for Industry 4.0. Sustainable Logistics and Production in Industry 4.0: New Opportunities and Challenges, 1,18 (2020) [CrossRef] [Google Scholar]
- H. Dyckhoff, A typology of cutting and packing problems. European journal of operational research, 44, 145 (1990) [CrossRef] [MathSciNet] [Google Scholar]
- J. A. Bennell, J. F. Oliveira, The geometry of nesting problems: A tutorial. European journal of operational research, 184, 397 (2008) [CrossRef] [MathSciNet] [Google Scholar]
- A. C. Cherri, M. N. Arenales, H. H. Yanasse, K. C. Poldi, A. C. G. Vianna, The one- dimensional cutting stock problem with usable leftovers–A survey. European Journal of Operational Research, 236, 395 (2014) [CrossRef] [MathSciNet] [Google Scholar]
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, D.Hassabis, Human-level control through deep reinforcement learning. Nature, 518, 529, (2015) [Google Scholar]
- Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32, 4 (2020) [Google Scholar]
- E. Hayman, B. Caputo, M. Fritz, J. O. Eklundh, On the significance of real-world conditions for material classification. In Computer Vision-ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, Springer Berlin Heidelberg, May 11-14, May 11-14 (2004), pp. 253-266 [Google Scholar]
- D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, D. Hassabis, Mastering the game of Go with deep neural networks and tree search. nature, 529, 484 (2016) [CrossRef] [Google Scholar]
- F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model. IEEE Transactions on Neural Networks, 20, 61-80. (2009) [CrossRef] [Google Scholar]
- T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations (ICLR), (2017) 1-14 [Google Scholar]
- I. Bello, H. Pham, Q. V. Le, M. Norouzi, S. Bengio, Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016) [Google Scholar]
- G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, B. Coppin, Deep reinforcement learning in large discrete action spaces,arXiv preprint arXiv:1512.07679 (2015) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.